The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223634 | PMC |
http://dx.doi.org/10.1042/BJ20030491 | DOI Listing |
Clin Transl Med
January 2025
Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University, Munich, Germany.
Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
Homologous recombination (HR) is the principal pathway undertaken by a cell for the error-free repair of DNA double-strand breaks that are frequently encountered by the cell. HR can be initiated at the sites of DNA double-strand breaks by generating long stretches of single-stranded 3' DNA overhang through a process called DNA end resection. In one DNA end resection pathway, this is achieved via the concerted effort of specialized machinery involving the RecQ family helicase BLM, the helicase/endonuclease DNA2, and a single-strand DNA binding protein complex RPA.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA.
Formation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus.
View Article and Find Full Text PDFPLoS Genet
December 2024
Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America.
TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Graduate School of Integrated Sciences for Life, Hiroshima University, Japan. Electronic address:
Homologous recombination is vital for DNA double-strand break repair. Dysfunction in homologous recombination can lead to cell death, mutations, and cancer. In fission yeast (Schizosaccharomyces pombe), RecQ helicase Rqh1 resolves recombination intermediates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!