The assembly of cilia and flagella depends on bidirectional intraflagellar transport (IFT). Anterograde IFT is driven by kinesin II, whereas retrograde IFT requires cytoplasmic dynein 1b (cDHC1b). Little is known about how cDHC1b interacts with its cargoes or how it is regulated. Recent work identified a novel dynein light intermediate chain (D2LIC) that colocalized with the mammalian cDHC1b homolog DHC2 in the centrosomal region of cultured cells. To see whether the LIC might play a role in IFT, we characterized the gene encoding the Chlamydomonas homolog of D2LIC and found its expression is up-regulated in response to deflagellation. We show that the LIC subunit copurifies with cDHC1b during flagellar isolation, dynein extraction, sucrose density centrifugation, and immunoprecipitation. Immunocytochemistry reveals that the LIC colocalizes with cDHC1b in the basal body region and along the length of flagella in wild-type cells. Localization of the complex is altered in a collection of retrograde IFT and length control mutants, which suggests that the affected gene products directly or indirectly regulate cDHC1b activity. The mammalian DHC2 and D2LIC also colocalize in the apical cytoplasm and axonemes of ciliated epithelia in the lung, brain, and efferent duct. These studies, together with the identification of an LIC mutation, xbx-1(ok279), which disrupts retrograde IFT in Caenorhabditis elegans, indicate that the novel LIC is a component of the cDHC1b/DHC2 retrograde IFT motor in a variety of organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165096PMC
http://dx.doi.org/10.1091/mbc.e02-10-0682DOI Listing

Publication Analysis

Top Keywords

retrograde ift
16
novel dynein
8
dynein light
8
light intermediate
8
intermediate chain
8
intraflagellar transport
8
ift
7
cdhc1b
6
retrograde
5
lic
5

Similar Publications

The intraflagellar transport cycle.

Nat Rev Mol Cell Biol

November 2024

Human Technopole, Milan, Italy.

Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein.

View Article and Find Full Text PDF
Article Synopsis
  • - Mutations in cilia genes are linked to ciliopathies, affecting cell functions such as development and survival, particularly in zebrafish lateral line hair cells.
  • - Disruption of cilia due to mutations in IFT genes (ift88 and dync2h1) led to increased hair cell apoptosis and decreased mitochondrial function, suggesting a link between mitochondrial dysfunction and cell death.
  • - While these mutations resulted in reduced hair cell regeneration and survival, they did not significantly alter the number of support cells or their proliferation during hair cell development.
View Article and Find Full Text PDF

Bidirectional transport in cilia is carried out by polymers of the IFTA and IFTB protein complexes, called anterograde and retrograde intraflagellar transport (IFT) trains. Anterograde trains deliver cargoes from the cell to the cilium tip, then convert into retrograde trains for cargo export. We set out to understand how the IFT complexes can perform these two directly opposing roles before and after conversion.

View Article and Find Full Text PDF

Quantitative proteomics reveals insights into the assembly of IFT trains and ciliary assembly.

J Cell Sci

July 2024

MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium.

View Article and Find Full Text PDF

INPP5E encodes inositol polyphosphate-5-phosphatase E, an enzyme involved in regulating the phosphatidylinositol (PIP) makeup of the primary cilium membrane. Pathogenic variants in INPP5E hence cause a variety of ciliopathies: genetic disorders caused by dysfunctional cilia. While the majority of these disorders are syndromic, such as the neuronal ciliopathy Joubert syndrome, in some cases patients will present with an isolated phenotype-most commonly non-syndromic retinitis pigmentosa (RP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!