The mechanism of action of drugs of abuse like cocaine and amphetamines has been studied extensively in the dopamine terminal field areas of the caudate-putamen (CPu) and the nucleus accumbens (NAc) of the rodent brain. These brain regions contain several neuropeptides that must play important roles in the normal physiological functions of these brain regions. The study of neuropeptide physiology in the context of the neurobiological responses to drugs of abuse may shed some light on the intrinsic mechanism of action of neuropeptides of the CPu and the NAc. The neuropeptides substance P (SP) and cholecystokinin (CCK) are present in the striatum where they could play an important role regulating the effects of psychostimulants like cocaine and amphetamines (methamphetamine [METH] is a long acting derivative of d-amphetamine). These highly addictive agents induce the release of dopamine (DA) (and other catecholamines) from dopaminergic terminals of the striatum. The excessive release of DA in the striatum and the NAc has been implicated in the habit-forming properties of these drugs. In order to study the contribution of SP and CCK in the striatum during psychostimulant treatment, we employed selective non-peptide neurokinin-1 (NK-1) and cholecystokinin-2 (CCK-2) receptor antagonists that readily cross the blood brain barrier. We infused the neurokinin-1 receptor (NK-1R) antagonist, L-733,060, into the striatum of freely moving rats via a microdialysis probe in order to assess the effects of SP on cocaine-induced DA overflow in the striatum. Infusion of the NK-1R antagonist prior to a systemic injection of cocaine (10 mg/kg i.p.) significantly attenuated DA overflow in the striatum. Conversely, infusion of a CCK-2 receptor (CCK-2R) antagonist, L-369,293, through the microdialysis probe evoked DA overflow in the striatum in the absence of cocaine and potentiated DA overflow after a single injection of cocaine (10 mg/kg i.p.). Exposure to METH (10 mg/kg 4x at two-hour intervals) produced deficits of dopamine transporters (DAT) in mice striatum that are detectable three days after the treatment and are long lasting. Pre-treatment (i.p. injections) with the NK-1R antagonist, WIN-51,708 30 minutes before the 1st and 4th injections of METH prevented the loss of DAT in the striatum. Moreover, pre-treatment with the NK-1R antagonist prevents METH-induced cell death. Taken together, these results demonstrate that the NK-1R and the CCK-2R are important modulators of the actions of the psychostimulants cocaine and METH. Neuropeptide receptors represent an important control point mediating the effects of the neurotransmitter DA in the striatum of the rodent brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0024-3205(03)00393-x | DOI Listing |
Exp Eye Res
January 2025
Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. Electronic address:
Substance P (SP) expressed by corneal nerves, is an 11-amino acid long neuropeptide from the tachykinin family, encoded by the Tac1 gene, and binds to neurokinin receptors. SP overexpression is associated with various pathological responses in the cornea including vasodilation, pain, inflammation, and angiogenesis in the normally avascular tissue. This study investigates the role of neurokinin-1 receptor (NK-1R) mediated signaling in nociception, nerve regeneration, and neuronal activation following mechanical corneal injury in mice.
View Article and Find Full Text PDFPituitary
December 2024
Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBIS), Seville, Spain.
Background: Human adamantinomatous craniopharyngioma (ACP) is a brain tumor that originates at the base of the skull and shows aggressive local behavior, invading sensitive structures such as the optic pathways and hypothalamus. The conventional treatment of the tumor has been surgery and radiotherapy with the consequent development of serious sequelae. It is well known that Substance P (SP) peptide and Neurokinin-1 receptor (NK-1R) are involved in inflammation and cancer progression and its blockage with NK-1R antagonists has been shown to effectively counteract tumor development in preclinical trials.
View Article and Find Full Text PDFLiver Int
July 2024
Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis and limited treatment options. Aprepitant, a selective NK-1R antagonist, can inhibit the growth of various tumours in vitro and in vivo. However, it remains unclear whether aprepitant has cytotoxic effects on iCCA.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
February 2024
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Pediatric Intensive Care Unit, Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Seville, Spain.
The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!