Plant nonspecific lipid transfer proteins (nsLTPs) are characterized by their ability to bind a broad range of hydrophobic ligands in vitro. Their biological function has not yet been elucidated, but they could play a major role in plant defense to physical and biological stress. An nsLTP was isolated from Amaranthus hypochondriacus seeds and purified by gel filtration and reversed-phase high-performance liquid chromatography techniques. The molecular mass of the protein as determined by mass spectrometry is 9747.29 Da. Data from amino acid sequence, circular dichroism and binding/displacement of a fluorescent lipid revealed that it belongs to the nsLTP1 family. The protein shows the alpha-helical secondary structure typical for plant nsLTPs 1 and shares 40 to 57% sequence identity with nsLTPs 1 from other plant species and 100% identity with an nsLTP1 from Amaranthus caudatus. A model structure of the protein in complex with stearate based on known structures of maize and rice nsLTPs 1 suggests a protein fold complexed with lipids closely related to that of maize nsLTP1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-9861(03)00201-7DOI Listing

Publication Analysis

Top Keywords

amino acid
8
acid sequence
8
nonspecific lipid
8
lipid transfer
8
amaranthus hypochondriacus
8
protein
5
sequence biochemical
4
biochemical characterization
4
characterization comparative
4
comparative modeling
4

Similar Publications

<b>Background and Objective:</b> Todolo coffee (<i>Coffea arabica</i> L. var. typica) is the oldest commercially grown coffee in the Toraja region of South Sulawesi and is currently at risk of extinction.

View Article and Find Full Text PDF

At the present stage, great progress has been achieved in understanding the mechanisms of the development of cerebral ischemia. This became possible due to the achievements of theoretical disciplines, in connection with which the general biological approach was formed in the study of pathogenesis of acute and chronic cerebrovascular disorders (CVD). The discovery of pathways of free radical oxidation in cerebral ischemia made it possible to substantiate and develop therapeutic strategies using drugs with antioxidant and neuroprotective activity.

View Article and Find Full Text PDF

Objective: To comprehensively investigate the predictive value of thyroid hormone sensitivity parameters for cervical lymph node metastasis in patients diagnosed with differentiated thyroid cancer (DTC) undergoing total thyroidectomy and neck lymph node dissection.

Methods: A retrospective cohort study was conducted involving patients diagnosed with DTC and evaluated for cervical lymph node metastasis. Relevant demographic, tumour, lymph node and thyroid hormone sensitivity parameter data were extracted from medical records and laboratory reports.

View Article and Find Full Text PDF

Effects of Aging on Glucose and Lipid Metabolism in Mice.

Aging Cell

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

Integrative taxonomy of the genus Pseudoacanthocephalus (Acanthocephala: Echinorhynchida) in China, with the description of two new species and the characterization of the mitochondrial genomes of Pseudoacanthocephalus sichuanensis sp. n. and Pseudoacanthocephalus nguyenthileae.

Parasit Vectors

December 2024

Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.

Background: Acanthocephalans (thorny headed worms) of the genus Pseudoacanthocephalus mainly parasitize amphibians and reptiles across the globe. Some species of the genus Pseudoacanthocephalus also can accidentally infect human and cause human acanthocephaliasis. Current knowledge of the species composition of the genus Pseudoacanthocephalus from amphibians and reptiles in China is incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!