Aim: To isolate and analyze a novel gene over-expressed during liver regeneration.
Methods: Total RNA of regenerating liver was extracted from liver tissue after 0-4-36-36-36 hr short interval successive partial hepatectomy (SISPH). Reverse transcription-polymerase chain reaction was used to synthesize double strand cDNA, after the tissue was digested by proteinase K and Sfi A/B. The double-strand cDNA was ligated to lambdaTriplEx2. lambdaphage packaging reaction was performed and E. coli XL1-Blue was infected for titering and amplifying. One expressed sequence tag was probed by Dig and phage in situ hybridization was carried out to isolate positive clones. Positive recombinant lambdaTriplEx2 was converted to the corresponding pTriplEx2, and bioinformatics was used to analyze full-length cDNA.
Results: We isolated a novel full-length cDNA during liver regeneration following SISPH.
Conclusion: We have succeeded in cloning a novel gene, based on bioinformatics. We postulate that this gene may function in complicated network in liver regeneration. On the one hand, it may exert initiation of liver regeneration via regulating nitric oxide synthesis. On the other hand, it may protect damaged residue lobus following SISPH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611801 | PMC |
http://dx.doi.org/10.3748/wjg.v9.i6.1282 | DOI Listing |
Eur J Pharmacol
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:
Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.
View Article and Find Full Text PDFCell Res
January 2025
Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%-80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol to generate phosphatidic acid, which plays important roles in intracellular signal transduction. DGKα is reportedly associated with progression of tumors, including hepatocellular carcinomas, but its relationship with liver regeneration has not been examined. The purpose of this research is to elucidate the role of DGKα in liver regeneration.
View Article and Find Full Text PDFNanotheranostics
January 2025
Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration.
View Article and Find Full Text PDFSci Adv
January 2025
School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!