Telomeres are composed of TTAGGG repeats and associated proteins. In somatic cells, telomere repeats are lost with each cell division, eventually leading to genetic instability and cellular senescence. In previous studies, we described substantial and disease stage-specific telomere shortening in peripheral blood (PB) leukocytes from patients with chronic myeloid leukemia (CML). Here, we sought to determine whether age-adjusted telomere length in PB granulocytes (deltaTEL(gran)) is associated with response to treatment with the selective tyrosine kinase inhibitor imatinib. A total of 517 samples from 206 patients in chronic phase (CP), accelerated phase (AP), and blast crisis (BC) before and up to 706 days after initiation of imatinib therapy (median: 144 days) were analyzed by quantitative fluorescence in situ hybridization of interphase cells in suspension (Flow-FISH); telomere fluorescence was expressed in molecular equivalents of soluble fluorochrome units (MESF). Telomere length in samples from start of treatment up to day 144 was significantly shorter (mean +/- SE; -1.5 +/- 0.3 kMESF) compared to samples from patients treated for more than 144 days (-0.8 +/- 0.3 kMESF, p = 0.035). In patients with repeated measurements, a significant increase in telomere length under treatment was observed. Median telomere length in major remission was found to be significantly longer compared to patients without response to treatment measured either by cytogenetics (n = 246, p < 0.05), interphase FISH (n = 204, p = 0.002), or quantitative RT-PCR (n = 371, p < 0.05). In conclusion, the increase in telomere length under treatment with imatinib reflects a shift from Ph+ to Ph- cells in the PB of patients with CML.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2003.tb03229.xDOI Listing

Publication Analysis

Top Keywords

telomere length
28
length treatment
12
patients chronic
12
telomere
10
treatment imatinib
8
cells patients
8
chronic myeloid
8
myeloid leukemia
8
response treatment
8
144 days
8

Similar Publications

Telomere Length and Symptoms of Attention Deficit and Hyperactivity Disorder in Children at 6-12 Years.

J Atten Disord

January 2025

Occupational Therapy Research Group (InTeO, Investigación en Terapia Ocupacional), Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain.

Objective: To explore the association between telomere length (TL) and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6-12 years.

Method: Data from 1,759 children belonging to the HELIX project cohorts and the Asturias, Gipuzkoa and Valencia cohorts of INMA project were included. TL was determined by blood sample using a PCR protocol.

View Article and Find Full Text PDF

Telomemore enables single-cell analysis of cell cycle and chromatin condensation.

Nucleic Acids Res

January 2025

Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden.

Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites.

View Article and Find Full Text PDF

The existing evidence indicating that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with a range of adverse outcomes, including alterations in anthropometric indices, underscores the need for further investigation into the underlying mechanisms. This study aims to examine the effects of prenatal PAH exposure on anthropometric indices and telomere length (TL), as well as to explore whether changes in TL can serve as a predictor of alterations in anthropometric measures. The study was conducted in Shenyang, China, with 2460 pregnant women participating between 2022 and 2023.

View Article and Find Full Text PDF

Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging.

View Article and Find Full Text PDF

Background: Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood telomere length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!