Schistosomiasis afflicts an estimated 200 million people in 76 countries and an additional 600 million people are at risk of acquiring this infection. Even though effective anthelmintic treatment and snail eradication control programs exist, the discovery of an effective vaccine still remains the most potentially powerful means of control for this disease. We have concentrated on a vaccine candidate (large subunit of calpain or Sm-p80) because of its potential in conferring protection against challenge infection and its pivotal role in surface membrane biogenesis of schistosomes. Since surface membrane renewal is a major phenomenon employed by hemohelminths to evade host immune system; an immune response directed against Sm-p80 should make the parasite prone to immune clearance from the host by both providing a well-targeted attack and by potentially inhibiting the surface membrane biogenesis process. In the present study, we have utilized DNA immunization protocols using Sm-p80 with plasmids encoding interleukin-2 (IL-2) and interleukin-12 (IL-12). Sm-p80 by itself provided a 39% protection (P=0.0001) against challenge infection in C57BL/6 mice. This protection was increased to 57% (P=0.0001) when plasmid encoding IL-2 was co-administered with Sm-p80 DNA. Co-injection of plasmid DNA encoding IL-12 with Sm-p80 DNA yielded a protection level of 45% (P=0.0001). Statistically, the protection conferred by including IL-2 and IL-12 was significantly greater than when only the Sm-p80 was used. Sm-p80 DNA by itself elicited strong responses that includes IgG(2A) and IgG(2B) antibody isotypes. The introduction of IL-2 DNA with Sm-p80 DNA led to an increase in total IgG and IgG(2A) and IgG(2B) titres. Whereas co-administration of IL-12 DNA with Sm-p80 DNA resulted in the augmentation of only total IgG and IgG(2A). This data reinforces the potential of Sm-p80 as an excellent candidate for a schistosomiasis vaccine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0264-410x(03)00159-2 | DOI Listing |
Discov Nano
January 2025
National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.
Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.
View Article and Find Full Text PDFSmall
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!