Objectives: The study evaluated a nonsurgical means of intramyocardial cell introduction using the coronary venous system for direct myocardial access and cell delivery.
Background: Direct myocardial cell repopulation has been proposed as a potential method to treat heart failure.
Methods: We harvested bone marrow from Yorkshire swine (n = 6; 50 to 60 kg), selected culture-flask adherent cells, labeled them with the gene for green fluorescence protein, expanded them in culture, and resuspended them in a collagen hydrogel. Working through the coronary sinus, a specialized catheter system was easily delivered to the anterior interventricular coronary vein. The composite catheter system (TransAccess) incorporates a phased-array ultrasound tip for guidance and a sheathed, extendable nitinol needle for transvascular myocardial access. A microinfusion (IntraLume) catheter was advanced through the needle, deep into remote myocardium, and the autologous cell-hydrogel suspension was injected into normal heart. Animals were sacrificed at days 0 (n = 2), 14 (n = 1, + 1 control/collagen biogel only), and 28 (n = 2), and the hearts were excised and examined.
Results: We gained widespread intramyocardial access to the anterior, lateral, septal, apical, and inferior walls from the anterior interventicular coronary vein. No death, cardiac tamponade, ventricular arrhythmia, or other procedural complications occurred. Gross inspection demonstrated no evidence of myocardial perforation, and biogel/black tissue dye was well localized to sites corresponding to fluoroscopic landmarks for delivery. Histologic analysis demonstrated needle and microcatheter tracts and accurate cell-biogel delivery.
Conclusions: Percutaneous intramyocardial access is safe and feasible by a transvenous approach through the coronary venous system. The swine offers an opportunity to refine approaches used for cellular cardiomyoplasty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0735-1097(03)00397-8 | DOI Listing |
Ann Transl Med
August 2024
Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia.
Cardiovascular diseases (CVDs), particularly stroke and myocardial infarction (MI) contributed to the leading cause of death annually among the chronic diseases globally. Despite the advancement of technology, the current available treatments mainly served as palliative care but not treating the diseases. However, the discovery of mesenchymal stem cells (MSCs) had gained a consideration to serve as promising strategy in treating CVDs.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan.
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable angina, to myocardial death, that is, the immediate life-threatening condition of myocardial infarction. Even though patients may survive myocardial infarction, the resulting ischemia-reperfusion injury triggers a cascade of inflammatory reactions and oxidative stress that poses a significant threat to myocardial function following successful revascularization.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia.
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany.
Cardiovascular diseases are the leading cause of death in industrialized nations. Due to the high number of patients and expensive treatments, according to the Federal Statistical Office (2017) in Germany, cardiovascular diseases account for around 15% of total health costs. Advanced coronary artery disease is mainly the result of chronic disorders such as high blood pressure, diabetes, and dyslipidemia.
View Article and Find Full Text PDFJ Stem Cells Regen Med
May 2022
Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia.
Coronary heart disease (CHD) is a leading cause of death globally, while its current management is limited to reducing the myocardial infarction area without actually replacing dead cardiomyocytes. Direct cell reprogramming is a method of cellular cardiomyoplasty which aims for myocardial tissue regeneration, and CD34 cells are one of the potential sources due to their shared embryonic origin with cardiomyocytes. However, the isolation and culture of non-adherent CD34 cells is crucial to obtain adequate cells for high-efficiency genetic modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!