The role of brain somatostatin (SST) on memory function after olfactory bulbectomy (OBX) was investigated by using the passive-avoidance task and immunohistochemical analyses in mice. The present study indicated that the learning and memory-related behaviour was impaired on the 7th and 14th day, but not on the 1st day after OBX. The impairment of learning and memory-related behaviour on the 14th day after OBX was dose-dependently reversed by intracerebroventricularly administered SST (1 microg per mouse). To ascertain the correlation between SST in mouse brain and the impairment of learning and memory-related behaviour induced by OBX, the immunohistochemical distribution of brain SST was determined by fluorescence intensity using two-dimensional microphotometry. The intensity of SST fluorescence was low in the hippocampus on the 14th day after OBX in comparison with Sham controls. These results suggest that SST in the hippocampus is related to the impairment of learning and memory-related behaviour induced by OBX.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-4328(02)00383-2DOI Listing

Publication Analysis

Top Keywords

learning memory-related
20
memory-related behaviour
20
impairment learning
16
behaviour induced
12
14th day
12
day obx
12
fluorescence intensity
8
brain somatostatin
8
olfactory bulbectomy
8
induced obx
8

Similar Publications

Background: Environmental factors account for a considerable percentage of dementia cases. Studies in animal models have shown that environmental enrichment (EE; i.e.

View Article and Find Full Text PDF

Background: Population aging and the increase in memory-related diseases have motivated the search for accessible cognitive screening instruments. To develop a digital memory and learning test (DMLT) based on Rey's Auditory Verbal Learning Test (RAVLT) principles to assess cognition in the elderly and identify early cognitive decline.

Methods: The research was divided into two phases: developing the digital test and the experimental phase of comparison with a reference test.

View Article and Find Full Text PDF

Temporal ablation of the ciliary protein IFT88 alters normal brainwave patterns.

Sci Rep

January 2025

Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.

Article Synopsis
  • The primary cilium is a crucial organelle involved in various signaling pathways, and its dysfunction is linked to conditions like Bardet-Biedl syndrome, Alzheimer's, and autism, all of which can lead to cognitive impairment.
  • Researchers studied the effects of temporarily disabling the IFT88 gene, vital for cilia formation, in adult mice to understand cilia's role in brain activity.
  • The findings showed that mice lacking functional cilia had significant learning deficits and abnormal brainwave patterns, emphasizing the importance of primary cilia for proper neural function and memory in adults.
View Article and Find Full Text PDF

Human aging affects the ability to remember new experiences, in part, because of altered neural function during memory formation. One potential contributor to age-related memory decline is diminished neural selectivity -- i.e.

View Article and Find Full Text PDF

Previous research has suggested the importance of relational language and working memory in children's relational reasoning. The tendency to use language (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!