Yellow fever virus quantitation is performed routinely by cultivation of virus containing samples using susceptible cells. Counting of the resulting plaques provides a marker for the number of infectious particles present in the sample. This assay usually takes up to 5 days before results are obtained and must be carried out under L2 or L3 laboratory conditions, depending on the yellow fever virus strain used. For clinical diagnosis of yellow fever virus infections the cell culture-based approach takes too long and is of limited practical relevance. Recently, due to its considerable sensitivity, PCR has become a promising method for virus detection. However, whilst PCR can detect virus-specific nucleic acids, it does not allow conclusions to be drawn regarding the infectious potential of the virus detected. Nonetheless, for diagnostic purposes, a rapid, specific and sensitive virus PCR is preferable. Therefore, two independent yellow fever virus-specific real-time PCR assays were established and compared the viral RNA loads to the results of a traditional plaque assay. The estimated ratio of yellow fever virus genomes to infectious particles was between 1000:1 and 5000:1; both approaches displayed a comparable precision of <45%. A significant correlation between genome number as determined by real-time PCR and the corresponding number of plaques in paired samples was found with a Pearson coefficient of correlation of r=0.88 (P<0.0001).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-0934(03)00129-0 | DOI Listing |
Parasit Vectors
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.
View Article and Find Full Text PDFJ Am Mosq Control Assoc
January 2025
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
World Health Organization, 20 Avenue Appia, 1211 Geneva, Switzerland.
: Yellow fever (YF) outbreaks continue to affect populations that are not reached by routine immunization services, such as workers at a high risk of occupational exposure to YF. In the Central African Republic (CAR), YF cases were detected in districts characterized by the presence of workers in forest areas. We developed an innovative approach based on a local partnership with private companies of the extractive industry to administer YF vaccine to workers in remote areas during the response to an outbreak.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
: Yellow fever virus (YFV) (, ) is the etiologic agent of yellow fever (YF), a vector-borne disease with significant morbidity and mortality across the tropics and neotropics, despite having a highly efficacious and safe vaccine (17D). Vaccination provides lifelong protection from YF disease mediated by humoral immunity. There are several versions of the original 17D vaccine: 17D-204 (marketed in the USA as YF-VAX, in France as Stamaril, and in China as Tiantan-V), 17D-213 (Russian Federation), and 17DD (by FIOCRUZ in Brazil).
View Article and Find Full Text PDFInsects
December 2024
Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil.
Mosquito control still relies heavily on synthetic molecules, which can lead to the selection of resistant populations and undesirable environmental problems. This study described the preparation of a nanoparticle of the plant-derived molecule, -myrcene, with chitosan, and the assessment of its toxicity against larvae of the yellow fever mosquito, . By producing fluorescent chitosan nanoparticles, we were able to observe their distribution in the digestive tract of larvae of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!