A systematic search was carried out on samples collected in various geographically distant hydrothermal sites located on the East Pacific Rise (EPR 9 degrees N and 13 degrees N) and Mid-Atlantic Ridge (MAR 36 degrees N and 37 degrees N) to investigate the diversity of virus-like particles (VLPs) from deep-sea vents. Eighty-nine positive enrichment cultures were obtained from one hundred and one crude samples at 85 degrees C. VLPs were detected by electron microscopy in fifteen different enrichments. Among the different morphotypes observed, the lemon-shaped type prevailed but rods and novel pleomorphic morphologies were also observed. Several observations strongly suggested that host strains of the novel VLPs belong to the hyperthermophilic euryarchaeal order Thermococcales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0923-2508(03)00075-5 | DOI Listing |
J Virol
January 2025
Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
Goose parvovirus (GPV) is an etiological agent of Derzsy's disease, afflicting geese and Muscovy ducks worldwide. Its high mortality rate among goslings and ducklings causes large losses to the waterfowl industry. Toward molecular and structural characterization, virus-like particles (VLPs) of GPV were produced, and the capsid structure was determined by cryogenic electron microscopy (cryo-EM) at a resolution of 2.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic.
Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env-gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines.
Vaccines (Basel)
January 2025
Clinical Development, Takeda Pharmaceuticals International AG, Farman Strasse 11, Opfikon, 8152 Zurich, Switzerland.
Background: Major global economic and health burdens due to norovirus gastroenteritis could be addressed by an effective vaccine.
Methods: In this study, 428 adult recipients of various compositions of the norovirus vaccine candidate, HIL-214, were followed for 5 years, to assess immune responses to its virus-like particle antigens, GI.1 and GII.
Vaccines (Basel)
December 2024
Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
Background: Foot-and-mouth disease (FMD) causes significant economic losses, prompting vaccination as a primary control strategy. Virus-like particles (VLPs) have emerged as promising candidates for FMD vaccines but require adjuvants to enhance their immunogenicity. In this study, we evaluated the immunogenicity of a VLP-based vaccine with a water-in-oil-in-water (W/O/W) emulsion adjuvant, named WT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!