Nitrous oxide sources and sinks in coastal aquifers and coupled estuarine receiving waters.

Sci Total Environ

Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA.

Published: June 2003

Sources and sinks of the atmospherically reactive gas nitrous oxide (N(2)O) were determined in the heavily nutrient loaded Childs River in Cape Cod, MA. Surface waters were supersaturated and bottom waters were depleted with N(2)O throughout the system. In apparent septic effluent plumes, N(2)O concentrations reached 3 orders of magnitude above atmospheric equilibrium. Because nitrate and N(2)O concentrations correlated in groundwater entering the estuary, septic tank effluent appeared responsible for the supersaturated concentrations of N(2)O in surface waters. A hyperbolic function fit nitrate and N(2)O concentrations in the water column of the estuary with a maximum supersaturation of approximately 60 nM. From surface water supersaturation we predicted a release of 480 nmol N(2)O m(-2) h(-1) to the atmosphere in the summer. Property plots of salinity vs. bottom-water N(2)O suggested a benthic sink of N(2)O. Consistent with this trend, sediments consumed rather than released N(2)O in most flux measurements. Nutrient loading did not directly alter benthic N(2)O flux, potentially because stratification limited exposure of sediments to nitrate-rich surface waters, but macroalgal cover increased benthic N(2)O consumption. Sediment N(2)O consumption averaged 111 nmol N(2)O m(-2) h(-1) and correlated with oxygen uptake. Losses from the system to the atmosphere and sediments exceeded inputs of N(2)O contaminated groundwater, which suggests missing N(2)O sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0048-9697(02)00614-9DOI Listing

Publication Analysis

Top Keywords

n2o
16
surface waters
12
n2o concentrations
12
nitrous oxide
8
sources sinks
8
nitrate n2o
8
nmol n2o
8
n2o m-2
8
m-2 h-1
8
n2o flux
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!