GABAergic interneurons can phase the output of principal cells, giving rise to oscillatory activity in different frequency bands. Here we describe a new subtype of GABAergic interneuron, the multipolar bursting (MB) cell in the mouse neocortex. MB cells are parvalbumin positive but differ from fast-spiking multipolar (FS) cells in their morphological, neurochemical, and physiological properties. MB cells are reciprocally connected with layer 2/3 pyramidal cells and are coupled with each other by chemical and electrical synapses. MB cells innervate FS cells but not vice versa. MB to MB cell as well as MB to pyramidal cell synapses exhibit paired-pulse facilitation. Carbachol selectively induced synchronized theta frequency oscillations in MB cells. Synchrony required both gap junction coupling and GABAergic chemical transmission, but not excitatory glutamatergic input. Hence, MB cells form a distinct inhibitory network, which upon cholinergic drive can generate rhythmic and synchronous theta frequency activity, providing temporal coordination of pyramidal cell output.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0896-6273(03)00300-3 | DOI Listing |
Neurocrit Care
January 2025
Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Physical Culture, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdańsk, Poland.
The objective of this study is to evaluate the impact of EEG biofeedback training under normoxic and normobaric hypoxic conditions on both simple and complex reaction times in judo athletes, and to identify the optimal training frequency and environmental conditions that substantially enhance reaction times in the examined athlete groups. The study comprised 20 male judo athlete members of the Polish national judo team in the middleweight and heavyweight categories. We randomly assigned participants to an experimental group and a control group.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Background: It is well known from cross-sectional studies that pain intensity affects brain activity as measured by electroencephalography (EEG) in people with neuropathic pain (NP). However, quantitative characterisation is scarce.
Methods: In this longitudinal study, ten people with spinal cord injury-related NP recorded their home EEG activity ten days before and after taking medications over a period of several weeks.
Brain Sci
December 2024
Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
Background: Spinal cord injury (SCI) affects approximately 250,000 to 500,000 individuals annually. Current therapeutic interventions predominantly focus on mitigating the impact of physical and neurological impairments, with limited functional recovery observed in many patients. Electroencephalogram (EEG) oscillations have been investigated in this context of rehabilitation to identify effective markers for optimizing rehabilitation treatments.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.
The brain develops most rapidly during pregnancy and early neonatal months. While prior electrophysiological studies have shown that aperiodic brain activity undergoes changes across infancy to adulthood, the role of gestational duration in aperiodic and periodic activity remains unknown. In this study, we aimed to bridge this gap by examining the associations between gestational duration and aperiodic and periodic activity in the EEG power spectrum in both neonates and toddlers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!