We have previously shown that cryopreservation leads to increased apoptotic death of porcine hepatocytes intended for use in a bioartificial liver (BAL). This study was designed to determine if a broad-spectrum caspase inhibitor, IDN-1965, reduced apoptosis and increased function of cryopreserved porcine hepatocytes in static culture or in a BAL. Porcine hepatocytes were studied immediately after isolation and after 2 weeks of cryopreservation in liquid nitrogen using medium supplemented with 25 micromol/L IDN-1965 or vehicle. Both apoptotic and necrotic cells were observed in cultures of fresh and cryopreserved hepatocytes, but the percentage of apoptotic cells increased after cryopreservation. Cryopreservation in IDN-1965 improved hepatocyte viability and reduced apoptotic cell death determined by TUNEL assay. Cryopreservation of hepatocytes in IDN-1965 was also associated with reduced caspase 3-like activity, decreased release of cytochrome c from mitochondria, and a slower decline in mitochondrial membrane potential after thawing. These markers of apoptosis were lowest after cryopreservation when IDN-1965 was added to both the culture and cryopreservation medium. Functional markers of hepatocyte activity (albumin production, diazepam metabolism, urea production) were also increased after cryopreservation and culture of hepatocytes in medium supplemented with 25 micromol/L IDN-1965. Cryopreservation of porcine hepatocytes in the presence of caspase inhibitor IDN-1965 was associated with reduced apoptosis and improved function of porcine hepatocytes in both static culture and a perfused BAL. These data demonstrate that inhibition of apoptosis also preserves cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/000000003108746696 | DOI Listing |
Cell Prolif
January 2025
MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics Division, Tsinghua University, Beijing, China.
Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective.
View Article and Find Full Text PDFDis Model Mech
January 2025
Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.
Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large animal HCC model with tailored tumor mutations.
View Article and Find Full Text PDFLife Sci
February 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:
Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.
Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.
Best Pract Res Clin Gastroenterol
December 2024
Department of Critical Care Medicine, University of Alberta, Edmonton, Canada; Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada. Electronic address:
Int J Mol Sci
December 2024
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!