Williams-Beuren syndrome (WBS) is a segmental aneusomy syndrome that results from a heterozygous deletion of contiguous genes at 7q11.23. Three large region-specific low-copy repeat elements (LCRs), composed of different blocks (A, B, and C), flank the WBS deletion interval and are thought to predispose to misalignment and unequal crossing-over, causing the deletions. In this study, we have determined the exact deletion size and LCR copy number in 74 patients with WBS, as well as precisely defined deletion breakpoints in 30 of them, using LCR-specific nucleotide differences. Most patients (95%) exhibit a 1.55-Mb deletion caused by recombination between centromeric and medial block B copies, which share approximately 99.6% sequence identity along 105-143 kb. In these cases, deletion breakpoints were mapped at several sites within the recombinant block B, with a cluster (>27%) occurring at a 12 kb region within the GTF2I/GTF2IP1 gene. Almost one-third (28%) of the transmitting progenitors were found to be heterozygous for an inversion between centromeric and telomeric LCRs. All deletion breakpoints in the patients with the inversion occurred in the distal 38-kb block B region only present in the telomeric and medial copies. Finally, only four patients (5%) displayed a larger deletion ( approximately 1.84 Mb) caused by recombination between centromeric and medial block A copies. We propose models for the specific pairing and precise aberrant recombination leading to each of the different germline rearrangements that occur in this region, including inversions and deletions associated with WBS. Chromosomal instability at 7q11.23 is directly related to the genomic structure of the region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180575 | PMC |
http://dx.doi.org/10.1086/376565 | DOI Listing |
Clin Chem
January 2025
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.
Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.
View Article and Find Full Text PDFCongenit Anom (Kyoto)
January 2025
Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan.
Turner syndrome is a chromosomal disorder, characterized by the partial or total deletion of one X chromosome, resulting in various karyotypes that presumably lead to different phenotypes. However, most studies find it difficult to predict phenotypes from karyotypes due to the presence of mosaicism. The purpose of this study is to clarify the relationship between karyotype and phenotype in Turner syndrome with non-mosaic X chromosome structural rearrangements.
View Article and Find Full Text PDFEndocr J
December 2024
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
The mesenchymal transformations of infiltrating gliomas are uncommon events. This is particularly true of IDH-mutant astrocytomas and oligodendrogliomas, in which mesenchymal transformation is exceedingly rare. oligosarcoma is a newly recognized methylation class (MC) that represents transformed 1p/19q co-deleted oligodendrogliomas, but recent studies indicate it may be non-specific.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy.
Background/objective: Large genomic rearrangements of gene, particularly deletions and duplications, have been linked to hereditary breast-ovarian cancer. Our research specifically focuses on delineating the intronic breakpoints associated with rearrangements of exon 11, which is crucial for understanding the mechanisms underlying these genomic changes in patients with hereditary breast and ovarian syndrome.
Methods: By using next-generation sequencing, we identified one duplication and three deletions of exon 11, confirmed by Multiplex Ligation-Dependent Probe Amplification analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!