Accumulation of inflammatory microglia in Alzheimer's senile plaques is a hallmark of the innate response to beta-amyloid fibrils and can initiate and propagate neurodegeneration characteristic of Alzheimer's disease (AD). The molecular mechanism whereby fibrillar beta-amyloid activates the inflammatory response has not been elucidated. CD36, a class B scavenger receptor, is expressed on microglia in normal and AD brains and binds to beta-amyloid fibrils in vitro. We report here that microglia and macrophages, isolated from CD36 null mice, had marked reductions in fibrillar beta-amyloid-induced secretion of cytokines, chemokines, and reactive oxygen species. Intraperitoneal and stereotaxic intracerebral injection of fibrillar beta-amyloid in CD36 null mice induced significantly less macrophage and microglial recruitment into the peritoneum and brain, respectively, than in wild-type mice. Our data reveal that CD36, a major pattern recognition receptor, mediates microglial and macrophage response to beta-amyloid, and imply that CD36 plays a key role in the proinflammatory events associated with AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193948 | PMC |
http://dx.doi.org/10.1084/jem.20021546 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!