The local mechanical environment is a crucial factor in determining cell and tissue differentiation during vertebrate skeletal development and repair. Unlike the basic response of bone to mechanical load, as described in Wolff's law, the mechanobiological relationship between the local mechanical environment and tissue differentiation influences everything from tissue type and molecular architecture to the formation of complex joints. This study tests the hypothesis that precisely controlled mechanical loading can regulate gene expression, tissue differentiation and tissue architecture in the adult skeleton and that precise manipulation of the defect's local mechanical environment can initiate a limited recapitulation of joint tissue development. We generated tissue type predictions using finite element models (FEMs) interpreted by published mechanobiological fate maps of tissue differentiation. The experiment included a custom-designed external fixator capable of introducing daily bending, shear or a combination of bending and shear load regimens to induce precisely controlled mechanical conditions within healing femoral defects. Tissue types and ratios were characterized using histomorphometrics and molecular markers. Tissue molecular architecture was quantified using polarized light and Fourier transforms, while immunological staining and in situ hybridization were used to characterize gene expression. The finite element models predicted the differentiation of cartilage within the defects and that substantial fibrous tissues would develop along the extreme excursion peripheries in the bending group. The three experimentally induced loading regimens produced contiguous cartilage bands across all experimental defects, inhibiting bony healing. Histomorphometric analysis of the ratios of cartilage to bone in the experimental groups were not significantly different from those for the knee joint, and Fourier transform analysis determined significantly different collagen fibril angle specializations within superficial, intermediate and deep layers of all experimental cartilages (P<0.0001), approximating those for articular cartilage. All stimulations resulted in the expression of collagen type II, while the bending stimulation also resulted in the expression of the joint-determining gene GDF-5. These findings indicate that the local mechanical environment is an important regulator of gene expression, tissue differentiation and tissue architecture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.00453 | DOI Listing |
PLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).
View Article and Find Full Text PDFSci Adv
January 2025
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Dermatology, The Affiliated Hospital to Changchun University of Chinese Medicine, China.
Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.
Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.
Am J Clin Pathol
January 2025
Department of Pathology, Duke University Medical Center, Durham, NC, US.
Objective: Distinguishing grade 3 pancreatic neuroendocrine tumors (PanNETs) from neuroendocrine carcinomas (PanNECs) is sometimes challenging. Recently, a diffuse p16-positive pattern was reported in PanNECs but not in grade 3 PanNETs, suggesting that p16 could help differentiate these entities. This study aimed to investigate p16 expression in PanNETs of various grades and its association with clinicopathologic features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!