The flavoenzyme choline oxidase catalyzes the oxidation of choline and betaine aldehyde to betaine. Earlier studies have shown that the choline oxidase from Arthrobacter globiformis contains FAD covalently linked to a histidine residue. To identify the exact type of flavin binding, the FAD-carrying amino acid residue was released by acid hydrolysis. The fluorescence excitation maxima of the isolated aminoacylriboflavin, showing a hypsochromic shift of the near-ultraviolet band relative to riboflavin, and the pH-dependent flavin fluorescence confirmed the presence of an 8alpha-substituted flavin linked to histidine. Similarly, MALDI-TOF mass spectrometry showed a molecular mass corresponding to histidylriboflavin. Classical experiments used to distinguish between the N(1) and N(3) isomers all indicated that the flavin was linked to the N(1) position of the histidine residue. The position of the FAD-carrying histidine residue in the choline oxidase polypeptide was identified by tryptic cleavage of the denatured enzyme, HPLC separation of the proteolytic peptide fragments, and characterization of the purified flavin-carrying peptide by mass spectrometry and spectroscopy. The FAD moiety was assigned to the tryptic peptide, His-Ala-Arg, corresponding to residues 87-89 in the open reading frame of the previously published cDNA sequence. Further analysis of the flavopeptide by collision-induced dissociation mass spectrometry confirmed that the flavin cofactor was attached to His(87). We conclude that this variant of choline oxidase contains 8alpha-[N(1)-histidyl]FAD at position 87 in the polypeptide chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0274266 | DOI Listing |
Food Chem
March 2025
Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:
Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.
View Article and Find Full Text PDFBiomolecules
October 2024
Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran.
3 Biotech
December 2024
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India.
Unlabelled: Drought is a serious problem that impacts sugarcane production and productivity worldwide. In this current investigation, a codon-optimized choline oxidase () gene was transformed into hybrid cultivar Co 86032 through -mediated transformation. The transgenic events with the gene driven by the portubi882 (PD2) promoter accumulated elevated levels of glycine betaine (5 - 10µg/g) whereas untransformed control plants accumulated less than 1.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Accurate determination of pesticide residues is crucial for food safety. A self-calibration method was developed for dual-signal "naked-eye" detection of organophosphorus pesticides (OPs) using bifunctional gold nanozymes (AuNEs). OPs inhibit the cascade reaction of acetylcholinesterase/choline oxidase (AChE/CHO) to reduce hydrogen peroxide (HO) production, which affects the AuNE-catalyzed color reaction and quenches the fluorescence of AuNEs with the assistance of Fe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!