Notch1 is a member of a conserved family of large modular heterodimeric type 1 transmembrane receptors that control differentiation in multicellular animals. Receptor maturation is accompanied by a furin-dependent cleavage that converts the Notch1 precursor polypeptide into a heterodimer consisting of an extracellular ligand-binding subunit (NEC) and a transmembrane signaling subunit (NTM). Binding of a physiologic ligand to NEC induces signaling by triggering additional proteolytic cleavages in NTM, which allow its intracellular region to translocate to the nucleus where it participates in a transcriptional activation complex. In the absence of ligand, the three conserved LNR modules of the NEC subunit participate in maintaining the receptor in its resting conformation. Here, we report the solution structure of the first LNR module (LNR_A) of human Notch1, and identify residues of LNR_A perturbed by the presence of the adjacent module LNR_B. LNR_A is held together by a unique arrangement of three disulfide bonds and a single bound Ca(2+) ion, and adopts a novel fold that falls in the general class of irregular disulfide-bonded structures. Residues perturbed by the presence of the adjacent LNR_B module are predominantly hydrophobic, and lie on one face of the module. These studies represent an initial step toward understanding the structural interrelationships among the three contiguous LNR modules required for proper regulation of Notch signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034156yDOI Listing

Publication Analysis

Top Keywords

human notch1
8
lnr modules
8
perturbed presence
8
presence adjacent
8
module
5
nuclear magnetic
4
magnetic resonance
4
resonance structure
4
structure prototype
4
prototype lin12-notch
4

Similar Publications

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Tumor cell-derived N-acetyl-aspartyl-glutamate reshapes the tumor microenvironment to facilitate breast cancer metastasis.

Sci Bull (Beijing)

December 2024

Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.

View Article and Find Full Text PDF

JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis.

Int J Mol Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

High fructose levels inhibit the proliferation of cardiomyocytes via the Notch1 signaling pathway.

Cell Signal

January 2025

Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325038, Zhejiang, China; Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:

Fructose, as a natural and simple sugar, is not significantly harmful to the human body when consumed in moderation and can provide energy for the body. High-fructose diets have been linked to an increased risk of a range of metabolic disorders, including hypertriglyceridemia, hypertension, and diabetes mellitus. These conditions are known to be associated with an elevated risk of developing cardiometabolic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!