Objective: The primary aim of this study was to investigate, using an experimental rabbit model of osteoarthritis (OA), the effect of a selective mitogen-activated protein kinase kinase 1/2 (MEK-1/2) inhibitor, PD 198306, on the development of structural changes. Additional aims were to assess the effects of the inhibitor on levels of phosphorylated extracellular signal-regulated kinase 1/2 (phospho-ERK-1/2) and matrix metalloproteinase 1 (MMP-1; collagenase 1) in OA chondrocytes.

Methods: After surgical sectioning of the anterior cruciate ligament of the right knee joint, rabbits with OA were separated into 3 experimental groups: oral treatment with placebo or with PD 198306 at a therapeutic concentration of 10 mg/kg/day or 30 mg/kg/day. Each treatment started immediately after surgery. The animals were killed 8 weeks after surgery. Macroscopic and histologic studies were performed on the cartilage and synovial membrane. The levels of phospho-ERK-1/2 and MMP-1 in OA cartilage chondrocytes were evaluated by immunohistochemistry. Normal, untreated rabbits were used as controls.

Results: OA rabbits treated with the highest dosage of MEK-1/2 inhibitor showed decreases in the surface area (size) of cartilage macroscopic lesions (P < 0.002) and in osteophyte width on the lateral condyles (P = 0.05). Histologically, the severity of synovial inflammation (villous hyperplasia) was also reduced (P < 0.02). In cartilage from placebo-treated OA rabbits, a significantly higher percentage of chondrocytes in the superficial layer stained positive for phospho-ERK-1/2 and MMP-1 compared with normal controls. Rabbits treated with the highest dosage of PD 198306 demonstrated a significant and dose-dependent reduction in the level of phospho-ERK-1/2 and a lower level of MMP-1.

Conclusion: This study demonstrates that, in vivo, PD 198306, a selective inhibitor of MEK-1/2, can partially decrease the development of some of the structural changes in experimental OA. This effect was associated with a reduction in the level of phospho-ERK-1/2 in OA chondrocytes, which probably explains the action of the drug.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.11014DOI Listing

Publication Analysis

Top Keywords

kinase 1/2
12
development structural
12
structural changes
12
mitogen-activated protein
8
protein kinase
8
kinase kinase
8
associated reduction
8
mek-1/2 inhibitor
8
phospho-erk-1/2 mmp-1
8
rabbits treated
8

Similar Publications

Introduction: Patients with moderate-to-severe atopic dermatitis (AD), a body surface area (BSA) of ≤ 40%, and an itch numerical rating scale (NRS) score of ≥ 7 ("BARI itch dominant") have been characterized as an important group to consider for the oral janus kinase (JAK) 1/2 inhibitor baricitinib (BARI). Herein we aim to evaluate quality of life (QoL) and functioning outcomes in adult patients with BSA ≤ 40% and itch NRS ≥ 7 at baseline (BL) who received BARI 4 mg in the topical corticosteroid (TCS) combination trial BREEZE-AD7.

Materials: BREEZE-AD7 was a randomized, double-blind, placebo-controlled, parallel-group outpatient study involving adult patients with moderate-to-severe AD who received once-daily placebo or 2-mg or 4-mg BARI in combination with TCS for 16 weeks.

View Article and Find Full Text PDF

Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer.

Commun Biol

January 2025

Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.

View Article and Find Full Text PDF

Development of Potent and Selective CK1α Molecular Glue Degraders.

J Med Chem

January 2025

Department of Chemical and Systems Biology, Stanford Cancer Institute, School of Medicine Stanford University, Stanford, California 94305-6104, United States.

Molecular glue degraders (MGDs) are small molecules that facilitate proximity between a target protein and an E3 ubiquitin ligase, thereby inducing target protein degradation. Glutarimide-containing compounds are MGDs that bind cereblon (CRBN) and recruit neosubstrates. Through explorative synthesis of a glutarimide-based library, we discovered a series of molecules that induce casein kinase 1 alpha (CK1α) degradation.

View Article and Find Full Text PDF

Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM.

View Article and Find Full Text PDF

Purpose: To investigate the clinical features and prognosis of severe central nervous system (CNS) injury in children caused by coronavirus disease 2019 (COVID-19).

Method: We retrospectively studied confirmed pediatric cases of COVID-19 complicated with CNS injury.

Results: Nine patients diagnosed with COVID-19 complicated with severe CNS injury were admitted to the pediatric intensive care unit of the Affiliated Hospital of Jining University from December 1, 2022 to January 12, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!