Concentrated organic residues extracted from 5 blended aliquots of commercial beers were evaluated for their ability to induce sister chromatid exchange (SCE), chromosomal aberrations and forward mutation in Chinese hamster ovary (CHO) cells. Each extract was prepared by blending 4 commercial beers of similar ingredients and brewing method, passing the beer pool over XAD-2 resin, extracting the resin and concentrating the extract. Studies were performed both with and without metabolic activation using variable amounts of reconstituted residues from 225-fold concentrates of the blended samples. CHO cultures were treated with 0.75 microliters/ml through 10.0 microliters/ml of the concentrates in the SCE assays, 1.0 microliters/ml through 10.0 microliters/ml of the extracts in the aberration assays and 2.5 microliters/ml up to 20 microliters/ml for forward mutation assays. In preliminary screening for SCE as an indicator of potential DNA damage, a significant increase was observed for 3 of 5 concentrated samples; however, no increase in SCE was induced by any of the 5 samples when S9 was added as a source of exogenous metabolic activation. More definitive tests for induction of genetic events, i.e., chromosome aberrations and forward HGPRT mutations, were negative for all 5 extracts whether or not S9 mix was present. Since SCE were not induced in tests with metabolic activation and since there was no concordant aberration or point mutation induction, the preliminary indication of potential DNA damage shown by elevated SCE under conditions without metabolic activation appears to have little biological significance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0165-1218(92)90027-wDOI Listing

Publication Analysis

Top Keywords

metabolic activation
16
commercial beers
12
aberrations forward
12
forward mutation
12
chromosome aberrations
8
cho cells
8
microliters/ml 100
8
100 microliters/ml
8
assays microliters/ml
8
potential dna
8

Similar Publications

Reversal of inflammatory reprogramming by vasodilator agents in pulmonary hypertension.

ERJ Open Res

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.

Background: Pulmonary arterial hypertension (PAH) is a deadly disease without effective non-invasive diagnostic and prognostic testing. It remains unclear whether vasodilators reverse inflammatory activation, a part of PAH pathogenesis. Single-cell profiling of inflammatory cells in blood could clarify these PAH mechanisms.

View Article and Find Full Text PDF

Previous studies have confirmed that burns and scalds can lead to metabolic disorders in the liver. However, the effects of severe burns at various time points on liver lipid metabolism disorders, as well as the relationship between these disorders and liver function, metabolism, and infection, have not yet been investigated.This study established a SD rat scald model, macroscopic observation of weight changes, histological staining, Western blot detection of fat browning and metabolic indicators, reverse transcription quantitative polymerase chain reaction analysis of the expression of liver new fat generation genes, determination of liver function and inflammatory indicators.

View Article and Find Full Text PDF

Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.

View Article and Find Full Text PDF

The ability to identify unknown risks is the key to improving the level of food safety. However, the conventional nontargeted screening methods for new contaminant identification and risk assessment remain difficult work. Herein, a toxic-oriented screening platform based on high-expression epidermal growth factor receptor HEK293 cell membrane-coated magnetic nanoparticles (EGFR/MNPs) was first used for the discovery of unknown contaminants from food samples.

View Article and Find Full Text PDF

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!