The aim of this study was to investigate the efficacy and mechanism of action of a noninvasive remote ischemic preconditioning (IPC) technique for the protection of multiple distant skeletal muscles against ischemic necrosis (infarction). It was observed in the pig that three cycles of 10-min occlusion and reperfusion in a hindlimb by tourniquet application reduced the infarction of latissimus dorsi (LD), gracilis (GC), and rectus abdominis (RA) muscle flaps by 55%, 60%, and 55%, respectively, compared with their corresponding control (n = 6, P < 0.01) when they were subsequently subjected to 4 h of ischemia and 48 h of reperfusion. This infarct-protective effect of remote IPC in LD muscle flaps was abolished by an intravenous bolus injection of the nonselective opioid receptor antagonist naloxone (3 mg/kg) 10 min before remote IPC and a continuous intravenous infusion (3 mg/kg) during remote IPC and by an intravenous bolus injection of the selective delta 1-opioid receptor antagonist 7-benzylidenealtrexone maleate (3 mg/kg). However, this infarct-protective effect of remote IPC was not affected by an intravenous bolus injection of the ganglionic blocker hexamethonium chloride (20 mg/kg) or the nonspecific adenosine receptor antagonist 8-(p-sulfophenyl)theophylline (10 mg/kg) or by a local intra-arterial injection of the adenosine1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (3 mg/muscle flap) given 10 min before remote IPC. It was also observed that this remote IPC of skeletal muscle against infarction was associated with a slower rate of muscle ATP depletion during the 4 h of sustained ischemia and a reduced muscle neutrophilic myeloperoxidase activity after 1.5 h of reperfusion. These observations led us to speculate that noninvasive remote IPC by brief cycles of occlusion and reperfusion in a pig hindlimb is effective in global protection of skeletal muscle against infarction. This infarct-protective effect is most likely triggered by the activation of opioid receptors in the skeletal muscle, and remote IPC is associated with an energy-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00106.2003 | DOI Listing |
Exp Brain Res
January 2025
Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.
The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).
View Article and Find Full Text PDFS Afr J Physiother
November 2024
Discipline of Physiotherapy, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
Background: Critical care units require an interprofessional management approach to optimise patients' health. Clinical education and training delivered in remote healthcare settings are vital for fostering interprofessional collaboration (IPC) among health science students for future team functioning.
Objectives: Our study explored the IPC among clinicians in the intensive care unit (ICU) setting at two South African decentralised clinical training facilities to understand the existing collaborative practices that students are exposed to during their clinical training.
Medicina (Kaunas)
November 2024
Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
: Postreperfusion syndrome (PRS) is a significant challenge in liver transplantation (LT), leading to severe circulatory and metabolic complications. Ischemic preconditioning (IPC), including remote IPC (RIPC), can mitigate ischemia-reperfusion injury, although its efficacy in LT remains unclear. This study evaluated the impact of paired RIPC, involving the application of RIPC to both the recipient and the living donor, on the incidence of PRS and the need for rescue epinephrine during living-donor LT (LDLT).
View Article and Find Full Text PDFFront Physiol
November 2024
Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland.
Purpose: Remote ischemic preconditioning (RIPC) is a method of protection against induced ischemia reperfusion injury, and an increasing number of studies showed some of its inconclusive ergogenic effects in sports. RIPC involves short cycles of cuff inflation followed by its deflation which may affect many body systems. While most of the studies focus on single RIPC effects, there is insufficient data regarding training-like repeated RIPC interventions.
View Article and Find Full Text PDFEpidemiol Infect
November 2024
Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!