A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IL-1beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. | LitMetric

In the pathogenesis of type-1 diabetes insulin-producing beta-cells are destroyed by cellular autoimmune processes. The locality of beta-cell destruction is the inflamed pancreatic islet. During insulitis cytokines released from islet-infiltrating mononuclear cells affect beta-cells at several levels. We investigated whether cytokine-induced beta-cell destruction is associated with changes in the expression of the surface receptors intercellular adhesion molecule (ICAM)-1 and Fas. Islets from diabetes-prone and congenic diabetes-resistant BB rats were exposed to interleukin (IL)-1beta alone or in combination with interferon (IFN)-gamma plus tumour necrosis factor (TNF)-alpha. Cytokines decreased islet insulin content, suppressed glucose stimulated insulin secretion and generated enhanced amounts of nitric oxide and DNA-strand breaks. While no membrane alterations of IL-1beta treated islets cells were detectable, the cytokine combination caused damage of cell membranes. Independent of diabetes susceptibility IL-1beta treated islet beta-cells expressed a significantly increased amount of ICAM-1 on their surfaces which was not further increased by IFN-gamma+TNF-alpha. However, IL-1beta induced Fas expression was significantly enhanced only on beta-cells from diabetes-prone BB rats. From these results we suggest that IL-1beta mediates the major stimulus for ICAM-1 induction which is possibly a necessary but not sufficient step in the process of beta-cell destruction. Obviously, the additional enhancement of Fas expression on the surface of beta-cells is important for destruction. The combined action of all three cytokines induced the expression of Fas on the beta-cell surface independent of diabetes susceptibility, indicating that such a strong stimulus in vitro may induce processes different from the precise mechanisms of beta-cell destruction in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-8411(03)00039-8DOI Listing

Publication Analysis

Top Keywords

beta-cell destruction
16
expression surface
8
il-1beta treated
8
independent diabetes
8
diabetes susceptibility
8
fas expression
8
il-1beta
6
destruction
6
beta-cells
5
beta-cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!