Tetracycline-regulated secretion of human insulin in a transfected non-endocrine cell line.

J Mol Endocrinol

Department of Medicine and Therapeutics, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK.

Published: June 2003

Long-term constitutive secretion of insulin by implantation of ex vivo transfected cells such as fibroblasts or myoblasts or in situ by intramuscular injection of naked plasmid DNA provides a potential approach to gene therapy for diabetes mellitus. A mechanism for regulating insulin secretion will be necessary to realize the therapeutic potential of this approach. A second obstacle is the inability of non-endocrine host cells to fully process proinsulin. Therefore, alteration of the wild-type cDNA will be necessary to achieve processing of proinsulin by endogenous endoproteases within these cells. The cDNAs for beta-galactosidase (beta), human wild-type proinsulin (hppI1) and a mutated construct (hppI4), in which the dibasic PC2 and PC3 cleavage sites had been altered to form furin cleavage sites, were sub-cloned into four vectors (pCR3, pVR1012, pIRES, pTRE), including a tetracycline responsive plasmid (pTRE) that requires co-transfection with another plasmid encoding a transactivator (pTet-off) for transgene expression. Transient transfection of the COS-7 fibroblast cell line with these constructs was performed using DEAE-dextran and liposomes. Analysis of vector efficiencies revealed that pTRE/pTet-off>pIRES>pCR3>pVR1012. Further analysis demonstrated total pro/insulin secretion of 2.33 ng/10(6) cells/24 h with > or =25% processed to insulin in hppI-1.pTRE/pTet-off-transfected cells compared with 0.39 ng/10(6) cells/24 h and >70% processing in hppI-4.pTRE/pTet-off-transfected cells. In co-transfection studies with pTRE-hppI1/pTet-off and pTRE-hppI4/pTet-off constructs, pro/insulin secretion was inhibited to 65-66% and 36-38% of control (100%) in the presence of 0.01 and 0.1 microg/ml tetracycline respectively over a 24-h incubation period. Furthermore, reversal of tetracycline inhibition was demonstrated for pTRE-hppI1/pTet-off- and pTRE-hppI4/pTet-off-transfected cells. After a 48-h incubation with 1.0 microg/ml tetracycline, total pro/insulin levels were 10 and 14% compared with untreated cells respectively. On tetracycline removal, total proinsulin levels increased and were equivalent to untreated groups 72 h later. In conclusion, regulation of fully processed human insulin secretion has been achieved in a transiently transfected non-endocrine cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1677/jme.0.0300331DOI Listing

Publication Analysis

Top Keywords

human insulin
8
transfected non-endocrine
8
non-endocrine cell
8
potential approach
8
insulin secretion
8
cleavage sites
8
total pro/insulin
8
pro/insulin secretion
8
ng/106 cells/24
8
microg/ml tetracycline
8

Similar Publications

Background: Obesity and related metabolic disorders have reached epidemic levels, calling for diverse therapeutic strategies. Altering nutrient intake, timing and quantity by intermittent fasting seems to elicit beneficial health effects by modulating endocrine and cell signaling networks. This study explores the impact of cyclic nutrient availability in the form of every-other-day fasting (EODF) on human adipose stem cells (ASCs).

View Article and Find Full Text PDF

Adverse complications like metabolic disorders, neurotoxicity, and low central nervous system (CNS) penetration are associated with the long-term use of tenofovir disoproxil fumarate (TDF). Therefore, some modifications are required to enhance neurological functions using silver nanoparticles (AgNPs). This study aimed to evaluate the neuroprotective impact of silver nanoparticles (AgNPs)-conjugated TDF as AgNPs-TDF on the hippocampal microanatomy and some neuro-biomarkers of diabetic rats.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Discovery of Glucose Metabolism-Associated Genes in Neuropathic Pain: Insights from Bioinformatics.

Int J Mol Sci

December 2024

Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated.

View Article and Find Full Text PDF

The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!