Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salt hydrate pairs were used to control water activity in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. It was shown that salt hydrate pairs behave essentially the same in ionic liquids as they do in organic solvents as long as they do not dissolve. Initial rate-water activity profiles were prepared for the immobilized Candida antarctica lipase catalyzed synthesis of 2-ethylhexyl methacrylate. The ability to use salt hydrate pairs for the control of water activity in ionic liquids should allow for improved comparison of enzyme activity and specificity in ionic liquids and conventional solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp034001h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!