Background And Objective: The mechanism underlying stable cuff pressure in the Brandt rediffusion endotracheal tube during anaesthesia with nitrous oxide is not fully understood. The present study assessed changes in gas concentrations in the cuff during and after nitrous oxide anaesthesia.

Methods: The pressure of an air-filled Brandt endotracheal tube cuff was measured; anaesthesia was maintained with nitrous oxide 67% and oxygen 33% for 6 h in the Continuous Group; oxygen was substituted for nitrous oxide after 3 h of nitrous oxide anaesthesia in the Discontinuous Group (n = 8 for each). In some other patients, the study was terminated at 90, 180, 270 and 360 min (n = 8 for each). Gas concentrations in the cuff were measured at the end of the study.

Results: Cuff pressures increased slightly during the first 180 min of anaesthesia (P < 0.001). Thereafter, the cuff pressure did not change significantly in the Control Group but decreased in the Discontinuous Group (P < 0.001); there was a significant difference between the two groups (P < 0.0001). Cuff pressure never exceeded 22 mmHg and there were no air leaks in either group during the 6 h anaesthesia. Nitrous oxide concentrations in the cuff were 11.3 +/- 2.6% and 2.6 +/- 0.8% in the Control Group and Discontinuous Groups, respectively; however, changes in carbon dioxide and oxygen concentrations in the cuff were within approximately 1%.

Conclusions: Small changes in the nitrous oxide concentration in the cuff contribute to a stable cuff pressure in the Brandt rediffusion system, but changes in carbon dioxide or oxygen concentrations have little effect.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0265021503000590DOI Listing

Publication Analysis

Top Keywords

nitrous oxide
32
cuff pressure
16
concentrations cuff
16
gas concentrations
12
endotracheal tube
12
cuff
12
anaesthesia nitrous
12
changes gas
8
brandt endotracheal
8
tube cuff
8

Similar Publications

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Basic Characteristics of Ionic Liquid-Gated Graphene FET Sensors for Nitrogen Cycle Monitoring in Agricultural Soil.

Biosensors (Basel)

January 2025

Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan.

Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3--N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (NO), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO).

View Article and Find Full Text PDF

Unravelling biotic and abiotic mechanisms of mature compost to alleviate gaseous emissions in kitchen waste composting by metagenomic analysis.

Bioresour Technol

January 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Mature compost can reduce gaseous emissions in composting, but its regulation mechanisms via biotic and abiotic functions are largely unknown. This study used fresh and inactivated mature compost as additives in kitchen waste composting to unveil the relevant mechanisms using metagenomic analysis. Results showed that mature compost reduce gaseous emission by improving physiochemical properties and inoculating functional microbes.

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!