A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3' degenerate core based on four highly conserved amino acids and a longer 5' consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS(-)) and EPS-producing (EPS(+)) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS(+) bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS(+) strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC161484 | PMC |
http://dx.doi.org/10.1128/AEM.69.6.3299-3307.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!