Purpose: The present study aimed at investigating if 2'-2' difluorodeoxycytidine (dFdC) radioenhancement was mediated by an effect on induction and/or repair of radiation-induced DNA DSBs and chromosome aberrations in cells with different intrinsic radiosensitivity.

Methods: Confluent human head and neck squamous cell carcinoma cell lines designated SCC61 and SQD9 were treated with 5 microM dFdC for 3 or 24 h prior to irradiation. DNA DSBs induction and repair were analyzed by PFGE. Radiation-induced chromosome aberrations were examined with a FISH technique.

Results: In both cell lines, dFdC did not modify radiation-induced DNA DSBs in a dose range between 0 and 40 Gy. After a single dose of 40 Gy, dFdC affected neither the kinetic of repair nor the residual amount of DNA DSBs up to 4 h after irradiation. Whereas dFdC did not increase the induction of chromosome aberrations, after a single dose of 5 Gy, the percentage of aberrant cells and the number of aberrations per aberrant cells were significantly higher in combination with dFdC.

Conclusion: Our data suggest that under experimental conditions yielding substantial radioenhancement, dFdC decreases the repair of genomic lesions inducing secondary chromosome breaks but has no effect on DNA DSBs repair as measured by PFGE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0027-5107(03)00053-8DOI Listing

Publication Analysis

Top Keywords

dna dsbs
24
chromosome aberrations
16
human head
8
head neck
8
neck squamous
8
squamous cell
8
2'-2' difluorodeoxycytidine
8
radiation-induced dna
8
cell lines
8
single dose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!