The physicochemical properties, the colloidal stability in vitro and the biodistribution properties in mice of different PLGA-mPEG nanoparticle compositions were investigated. The nanoparticles were prepared by a precipitation-solvent evaporation technique. The physical characteristics and the colloidal stability of the PLGA-mPEG nanoparticles were significantly influenced by the composition of the PLGA-mPEG copolymer used to prepare the nanoparticles. PLGA-mPEG nanoparticles prepared from copolymers having relatively high mPEG/PLGA ratios were smaller and less stable than those prepared from copolymers having relatively low mPEG/PLGA ratios. All PLGA-mPEG nanoparticle compositions exhibited prolonged residence in blood, compared to the conventional PLGA nanoparticles. The composition of the PLGA-mPEG copolymer affected significantly the blood residence time and the biodistribution of the PLGA-mPEG nanoparticles in liver, spleen and bones. The in vivo behavior of the different PLGA-mPEG nanoparticle compositions did not appear to correlate with their in vitro stability. Optimum mPEG/PLGA ratios appeared to exist leading to long blood circulation times of the PLGA-mPEG nanoparticles. This may be associated with the effects of the mPEG/PLGA ratio on the density of PEG on the surface of the nanoparticles and on the size of the nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5173(03)00224-2DOI Listing

Publication Analysis

Top Keywords

plga-mpeg nanoparticles
20
plga-mpeg nanoparticle
12
nanoparticle compositions
12
mpeg/plga ratios
12
plga-mpeg
10
nanoparticles
10
vitro stability
8
biodistribution plga-mpeg
8
colloidal stability
8
nanoparticles prepared
8

Similar Publications

Background: Porphyromonas gingivalis adherence to oral streptococci is a key point in the pathogenesis of periodontal diseases (Honda in Cell Host Microbe 10:423-425, 2011). Previous work in our groups has shown that a region of the streptococcal antigen denoted BAR (SspB Adherence Region) inhibits P. gingivalis/S.

View Article and Find Full Text PDF

Purpose: To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo.

Methods: PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated.

View Article and Find Full Text PDF

Stem cell transplantation is a promising therapeutic strategy for myocardial infarction. However, transplanted cells face low survival rates due to oxidative stress and the inflammatory microenvironment in ischemic heart tissue. Melatonin has been used as a powerful endogenous antioxidant to protect cells from oxidative injury.

View Article and Find Full Text PDF

Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation.

Int J Pharm

January 2018

Department of Medicine, Faculty of Science, University of Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland; School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Electronic address:

Small-molecule agonists for the Toll-like receptors (TLR) 7 and 8 are effective for the immunotherapy of skin cancer when used as topical agents. Their systemic use has however been largely unsuccessful due to dose-limiting toxicity. We propose a polymer-based nanodelivery system to target resiquimod, a TLR7 ligand, to the lymph node in order to focus the immunostimulatory activity and to prevent a generalized inflammatory response.

View Article and Find Full Text PDF

Development and evaluation of long-circulating nanoparticles loaded with betulinic acid for improved anti-tumor efficacy.

Int J Pharm

October 2017

Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India. Electronic address:

The clinical application of betulinic acid (BA), a natural pentacyclic triterpenoid with promising antitumor activity, is hampered due to its extremely poor water solubility and relatively short half-life in the systemic circulation. In order to address these issues, herein, we developed betulinic acid loaded polylactide-co-glycolide- monomethoxy polyethylene glycol nanoparticles (PLGA-mPEG NPs). The PLGA-mPEG co-polymer was synthesized and characterized using NMR and FT-IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!