New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic alpha-hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to mu and delta opioid receptors. The analogue with (R)-HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to delta and a significant increase of affinity to mu receptors. In contrast, an analogue with (S)-HmPhe in the same position, was very potent and more specific to delta receptors than parent DT I. The analogue with (R)-HmVal at position 5 expressed higher delta affinity and selectivity than parent DT I. The analogue with other possible isomer (S)-HmVal was less selective for delta opioid receptors, as a result of decreasing affinity to delta and increasing affinity to mu receptors. The analogues with (R)- or (S)-HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1399-3011.2003.00067.x | DOI Listing |
Clin Cancer Res
January 2025
Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Purpose: Recent clinical advances with the approval of antibody-drug conjugates targeting Trop-2 such as sacituzumab-govitecan and datopotomab-deruxtecan have garnered tremendous interest for their therapeutic efficacy in numerous tumor types including breast and lung cancers. ImmunoPET can stratify tumor avidity, clarifying patient eligibility for ADC therapy as well as a diagnostic companion during therapy. Slow antibody circulation requires days to reach optimal imaging timepoints.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305.
Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs).
View Article and Find Full Text PDFJ Med Chem
January 2025
Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt 64287, Germany.
In recent years, rationally designed macrocycles have emerged as promising therapeutic modalities for challenging drug targets. Macrocycles can improve affinity, selectivity, and pharmacokinetic (PK) parameters, possibly via providing semirigid, preorganized scaffolds. Nevertheless, how macrocyclization affects PK-relevant properties is still poorly understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA.
View Article and Find Full Text PDFProtein Sci
February 2025
Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
The B domain of protein A is a biotechnologically important three-helix bundle protein. It binds the Fc fragment of antibodies with helix 1/2 and the Fab region with helix 2/3. Here we designed a helix shuffled variant by changing the connectivity of the helices, in order to redesign the helix bundle, yielding altered helix-loop-helix properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!