Background: Daily dialysis has shown excellent clinical results because a higher frequency of dialysis is more physiologic. On-line hemodiafiltration (OL-HDF) is a HDF technique that combines diffusion with high convection in which the dialysis fluid itself is used as a reinfusion solution. The aim of this study was to demonstrate the beneficial effect of the more effective dialysis schedule (daily dialysis) with the dialysis modality that offers the highest uremic toxin removal (on-line HDF).
Methods: Eight patients, six males and two females, on standard 4 to 5 hours three times a week OL-HDF (S-OL-HDF) were switched to daily OL-HDF (D-OL-HDF) 2 to 21/2 hours six times per week. Dialysis parameters were identical during both periods and only frequency and dialysis time of each session were changed. Tolerance, uremic toxin removal, urea kinetics, biochemical and anemia profiles, blood pressure, and left ventricular hypertrophy were evaluated.
Results: D-OL-HDF was well accepted and tolerated. The disappearance of postdialysis fatigue was rapidly reported by patients. Patients mantained the same [time average concentration (TAC) and weekly single-pool Kt/V (spKt/V)] throughout the study. However, equivalent renal urea clearance (EKR), standard Kt/V and weekly urea reduction ratio (URR) were increased during D-OL-HDF. Weekly urea, creatinine, osteocalcin, beta2-microglobulin, myoglobin, and prolactin reduction ratios were improved with D-OL-HDF. There was a significant decrease in predialysis plasma levels of urea, creatinine, acid uric, beta2-microglobulin and homocysteine over 6 months. Phosphate binders were reduced and antihypertensive drugs were stopped. A 30% regression of left ventricular mass was observed.
Conclusion: The change from S-OL-HDF to D-OL-HDF was well tolerated. Disappearance of postdialysis fatigue, better dialysis adequacy, a higher removal of middle and large molecules, a reduction of phosphate binders, improvement of status nutritional, and an important reduction of cardiovascular risk factors were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1755.2003.00043.x | DOI Listing |
J Am Coll Cardiol
November 2024
British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom.
Background: Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts.
Objectives: The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction.
Neuromodulation
January 2025
Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
Objectives: Biphasic sinusoidal repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation treatment that has been approved by the US Food and Drug Administration for treatment-resistant depression (TRD). Recent advances suggest that standard rTMS may be improved by altering the pulse shape; however, there is a paucity of research investigating pulse shape, owing primarily to the technologic limitations of currently available devices. This pilot study examined the feasibility, tolerability, and preliminary efficacy of biphasic and monophasic rectangular rTMS for TRD.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Australian Urban Research Infrastructure Network (AURIN), University of Melbourne, Melbourne, VIC 3052, Australia.
Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.
This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.
View Article and Find Full Text PDFToxics
November 2024
School of Public Health, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
Microplastics (MPs) are emerging environmental pollutants. Pregnancy and infancy are sensitive windows for environmental exposure. However, few studies have investigated the presence of MPs in mother-infant pairs, or the exposure source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!