Microdysgenesis (MD) is a neuropathological term that implies a variety of minor developmental abnormalities of the brain. Recently, MD has been used for pathological diagnosis of cerebral tissues surgically resected from epileptic patients. However, criteria or consensus on pathological diagnosis of MD is still vague and controversial because of the lack of control studies. Therefore, this study paid special attention to the presence of white matter neurons with perineuronal glial satellitosis (WMN-GS) and perivascular glial satellitosis (PVGS) in the white matter, which are occasionally observed in epileptic foci, in order to clarify whether they could be handled as definite findings of MD. The materials included 80 autopsied whole brains ranging from normal subjects to patients with cerebrovascular disorder, neurodegenerative diseases and malformations. In each case, the presence of WMN-GS and/or PVGS was searched in 10 gyri in all five lobes (rostral frontal lobe, caudal frontal lobe, parietal lobe, temporal lobe and oc-cipital lobe) and evaluated. Statistically significant, WMN-GS and/or PVGS preferentially appeared in a diseased group consisting of neuronal migration disorder and related conditions, such as polymicrogyria, nodular heterotopia or tuberous sclerosis, leading to a suggestive conclusion that the presence of WMN-GS and/or PVGS could be a peculiar form of MD possibly derived from neuronal migrational arrest or related events, even if they appear alone without any other gross abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-1827.2003.01480.xDOI Listing

Publication Analysis

Top Keywords

white matter
12
glial satellitosis
12
wmn-gs and/or
12
and/or pvgs
12
peculiar form
8
matter neurons
8
neurons perineuronal
8
perivascular glial
8
autopsied brains
8
pathological diagnosis
8

Similar Publications

From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography.

J Neurosci

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.

Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

A High Fat, High Sugar Diet Exacerbates Persistent Post-Surgical Pain and Modifies the Brain-Microbiota-Gut Axis in Adolescent Rats.

Neuroimage

January 2025

Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program. Electronic address:

Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions.

View Article and Find Full Text PDF

The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography.

View Article and Find Full Text PDF

Objective: To characterize structural integrity of the lumbosacral enlargement and conus medullaris within one month after spinal cord injury (SCI).

Methods: Lumbosacral cord MRI data were acquired in patients with sudden onset (<7 days) SCI at the cervical or thoracic level approximately one month after injury and in healthy controls. Tissue integrity and loss were evaluated through diffusion tensor (DTI) and T2*-weighted imaging (cross-sectional area [CSA] measurements).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!