The epidermal growth factor receptor and its ligands initiate a major signaling pathway that regulates keratinocyte growth in an autocrine manner. It is well known that high doses of epidermal growth factor receptor ligands inhibit keratinocyte growth. Recently, signal transducers and activators of transcription 1-dependent p21Waf1/Cip1 induction were reported to be involved in high-dose epidermal growth factor-dependent cell growth arrest in the A431 squamous cell carcinoma cell line; however, transfection of dominant-negative signal transducers and activators of transcription 1 adenovirus vector did not block epidermal growth factor-induced growth inhibition in normal human keratinocytes. As transforming growth factor beta is a potent inhibitor of keratinocyte proliferation, we hypothesized that transforming growth factor beta contributes to epidermal growth factor-mediated keratinocyte growth inhibition. Epidermal growth factor concentrations of 10 ng per ml enhanced transforming growth factor beta1 mRNA expression from 3 to 6 h poststimulation. Enzyme-linked immunosorbent assay analysis detected 150 pg per ml of transforming growth factor beta1 in the culture medium of keratinocytes incubated with 10 and 100 ng per ml epidermal growth factor, whereas 0.1 and 1.0 ng per ml epidermal growth factor slightly enhance transforming growth factor beta1 production. Epidermal growth factor (100 ng per ml) upregulated luciferase activity of p3TP-lux, which contains three tandem transforming growth factor beta-Smad signaling responsive elements, 6-fold compared with unstimulated cells. The epidermal growth factor-dependent induction of p3TP-lux luciferase activity was disrupted by transfection of the dominant negative form of transforming growth factor beta type I receptor adenovirus vector (AxdnALK5), which suggests that epidermal growth factor-induced transforming growth factor beta acts in an autocrine manner in keratinocytes. Moreover, transfection of AxdnALK5 completely blocked the growth inhibition induced by 100 ng per ml of epidermal growth factor in normal keratinocytes. These data demonstrate that an autocrine transforming growth factor beta1-ALK5 pathway is a negative feedback mechanism for epidermal growth factor-induced normal human keratinocyte growth.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1747.2003.12239.xDOI Listing

Publication Analysis

Top Keywords

growth factor
72
epidermal growth
56
transforming growth
40
growth
32
keratinocyte growth
24
factor beta
20
factor
18
growth inhibition
16
epidermal
14
growth factor-induced
12

Similar Publications

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Inflammation and Occlusive Retinal Vasculitis Post Faricimab.

JAMA Ophthalmol

January 2025

Truhlsen Eye Center, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha.

Importance: Randomized clinical trials have shown the safety and efficacy of faricimab as a novel vascular endothelial growth factor and angiopoietin-2 inhibitor in the treatment of neovascular age-related macular degeneration (nAMD) and macular edema of various etiologies. However, more rare adverse events may not be considered in clinical trials.

Objective: To describe 3 eyes that developed irreversible vision loss following initial mild intraocular inflammation (IOI) to faricimab.

View Article and Find Full Text PDF

Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.

View Article and Find Full Text PDF

Light signal regulates endoreduplication and tomato fruit expansion through the SlPIF1a-SlTLFP8-SlCDKB2 module.

Proc Natl Acad Sci U S A

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.

Light serves as an energy source for cell division and expansion during fruit development. Cell expansion significantly influences fruit size and is closely linked to endoreduplication, a unique cell cycle variation characterized by DNA replication without cytokinesis. Paradoxically, under conditions of ample photosynthates, light signaling suppresses cell expansion.

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!