Pair correlations of a dilute charged colloidal fluid near a glass wall.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratory of Atomic and Solid State Physics and Center for Materials Research, Cornell University, Ithaca, New York 14853-2501, USA.

Published: April 2003

Using confocal microscopy we examine the static structure of low density, highly charged colloidal suspensions near a repulsive glass boundary. We find no sign of an interparticle attraction of the magnitude noted previously.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.67.041402DOI Listing

Publication Analysis

Top Keywords

charged colloidal
8
pair correlations
4
correlations dilute
4
dilute charged
4
colloidal fluid
4
fluid glass
4
glass wall
4
wall confocal
4
confocal microscopy
4
microscopy examine
4

Similar Publications

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as CuS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with highly ordered structures and predictable optoelectronic properties provide an ideal platform to investigate the electrochemiluminescence (ECL) performance based on organic materials by atomically varying the molecular construction. Herein, the effect of imine-bond orientation on the ECL performance of COFs is investigated. We report two COFs (NC-COF and CN-COF) with different orientations of imine bonds using pyrene donor units (D) and bipyridine acceptor motifs (A) monomers.

View Article and Find Full Text PDF

The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.

View Article and Find Full Text PDF

In situ oxidized MoCT MXene film via electrochemical activation for smart electrochromic supercapacitors.

J Colloid Interface Sci

January 2025

College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China. Electronic address:

MoCT MXenes have great potential for multifunctional energy storage applications because of their outstanding electrical conductivity, superior cycling stability, and high optical transmittance. In this study, we fabricate MoCT film electrodes (referred to as MoC) on fluorine-doped tin oxide (FTO) substrates using the layer-by-layer (LbL) self-assembly technique. To improve the energy-storage performance of MoCT film electrodes, we develop a convenient electrochemical activation process to prepare in situ oxidized MoCT/MoO film electrodes (referred to as EA-MoC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!