We consider a lattice of coupled circle maps, a popular model for the study of mode-locked phenomena. We find that the onset of spatiotemporal intermittency (STI) in this system is analogous to directed percolation (DP), with the transition being to a unique absorbing state for low nonlinearities, and to weakly chaotic absorbing states for high nonlinearities. We find that the complete set of static exponents and spreading exponents at all critical points match those of DP very convincingly. Further, hyperscaling relations are fulfilled, leading to independent controls and consistency checks of the values of all the critical exponents. These results provide an example in support of the conjecture that the onset of STI in deterministic models belongs to the DP universality class. Nonuniversal spreading exponents are seen only for the cases where the initial state is homogeneous with symmetrically placed seeds leading to strictly symmetric spreading. However, very small departures from homogeneity are sufficient to restore the DP exponents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.67.056218 | DOI Listing |
Adv Mater
January 2025
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.
Materials (Basel)
November 2024
Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38a, Nadbystrzycka Street, 20-618 Lublin, Poland.
The aim of this study was to determine the frequency-temperature dependence of the AC conductivity and relaxation times in humid electrical pressboard used in the insulation of power transformers, impregnated with the innovative NYTRO BIO 300X bio-oil produced from plant raw materials. Tests were carried out for a composite of cellulose-bio-oil-water nanodroplets with a moisture content of 0.6% by weight to 5% by weight in the frequency range from 10 Hz to 5·10 Hz.
View Article and Find Full Text PDFPLoS One
December 2024
Biologic Institute, Redmond, WA, United States of America.
A key question in protein evolution and protein engineering is the prevalence of evolutionary paths between distinct proteins. An evolutionary path corresponds to a continuous path of functional sequences in sequence space leading from one protein to another. Natural selection could direct a mutating coding region in DNA along a continuous functional path (CFP), so a new protein could arise far more easily than if a coding region were randomly mutating without any constraints.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov, 410054, Russia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!