We consider a lattice of coupled circle maps, a popular model for the study of mode-locked phenomena. We find that the onset of spatiotemporal intermittency (STI) in this system is analogous to directed percolation (DP), with the transition being to a unique absorbing state for low nonlinearities, and to weakly chaotic absorbing states for high nonlinearities. We find that the complete set of static exponents and spreading exponents at all critical points match those of DP very convincingly. Further, hyperscaling relations are fulfilled, leading to independent controls and consistency checks of the values of all the critical exponents. These results provide an example in support of the conjecture that the onset of STI in deterministic models belongs to the DP universality class. Nonuniversal spreading exponents are seen only for the cases where the initial state is homogeneous with symmetrically placed seeds leading to strictly symmetric spreading. However, very small departures from homogeneity are sufficient to restore the DP exponents.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.67.056218DOI Listing

Publication Analysis

Top Keywords

directed percolation
8
onset spatiotemporal
8
spatiotemporal intermittency
8
coupled circle
8
circle maps
8
spreading exponents
8
exponents
5
evidence directed
4
percolation universality
4
universality onset
4

Similar Publications

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

Article Synopsis
  • 3D scaffolds provide a more natural environment for cell studies, but synthetic hydrogels often have limited pore sizes that restrict cell movement.
  • A new method using liquid-liquid phase separation creates macroporous hydrogels with adjustable pore sizes by controlling polymerization conditions like light intensity and hydrogel composition.
  • These macroporous gels, suitable for cell encapsulation, enhance cell spreading and migration, mimicking natural extracellular matrix (ECM) environments.
View Article and Find Full Text PDF

The aim of this study was to determine the frequency-temperature dependence of the AC conductivity and relaxation times in humid electrical pressboard used in the insulation of power transformers, impregnated with the innovative NYTRO BIO 300X bio-oil produced from plant raw materials. Tests were carried out for a composite of cellulose-bio-oil-water nanodroplets with a moisture content of 0.6% by weight to 5% by weight in the frequency range from 10 Hz to 5·10 Hz.

View Article and Find Full Text PDF

A key question in protein evolution and protein engineering is the prevalence of evolutionary paths between distinct proteins. An evolutionary path corresponds to a continuous path of functional sequences in sequence space leading from one protein to another. Natural selection could direct a mutating coding region in DNA along a continuous functional path (CFP), so a new protein could arise far more easily than if a coding region were randomly mutating without any constraints.

View Article and Find Full Text PDF

3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding.

ACS Appl Mater Interfaces

December 2024

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites.

View Article and Find Full Text PDF
Article Synopsis
  • The multisensor concept provides a fast and reliable way to assess gases and odors by mimicking biological detection systems through pattern recognition.
  • The study details the development of a sensor array using metal oxide nanostructures, specifically growing various oxides (Co, Ni, Mn, and Zn) on a chip to create chemiresistive films.
  • Results indicate that these nanostructures, particularly ZnO, enhance the sensor's performance, allowing detection of alcohol vapors at very low concentrations due to their high-sensitivity signals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!