A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lattice model for the kinetics of rupture of fluid bilayer membranes. | LitMetric

Lattice model for the kinetics of rupture of fluid bilayer membranes.

Phys Rev E Stat Nonlin Soft Matter Phys

Ottawa Carleton Institute of Physics, University of Ottawa Campus, Ottawa, Ontario, Canada K1N-6N5.

Published: May 2003

We have constructed a model for the kinetics of rupture of membranes under tension, applying physical principles relevant to lipid bilayers held together by hydrophobic interactions. The membrane is characterized by the bulk compressibility (for expansion) K, the thickness 2h(t) of the hydrophobic part of the bilayer, the hydrophobicity sigma, and a parameter gamma characterizing the tail rigidity of the lipids. The model is a lattice model which incorporates strain relaxation, and considers the nucleation of pores at constant area, constant temperature, and constant particle number. The particle number is conserved by allowing multiple occupancy of the sites. An equilibrium "phase diagram" is constructed as a function of temperature and strain with the total pore surface and distribution as the order parameters. A first-order rupture line is found with increasing tension, and a continuous increase in protopore concentration with rising temperature till instability. The model explains current results on saturated and unsaturated phosphatidylcholine lipid bilayers and thicker artificial bilayers made of diblock copolymers. Pore size distributions are presented for various values of area expansion and temperature, and the fractal dimension of the pore edge is evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.67.051908DOI Listing

Publication Analysis

Top Keywords

lattice model
8
model kinetics
8
kinetics rupture
8
lipid bilayers
8
particle number
8
rupture fluid
4
fluid bilayer
4
bilayer membranes
4
membranes constructed
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!