The excitation and subsequent proton decay of the isovector spin-flip giant monopole resonance (IVSGMR) is studied via the 208Pb(3He,t) reaction at 410 MeV. In the inclusive spectrum (60+/-5)% of the non-energy-weighted sum-rule strength for this 2 variant Planck's over 2h omega resonance was found in the region 29
Download full-text PDF
Source
http://dx.doi.org/10.1103/PhysRevLett.90.202501 DOI Listing Publication Analysis
Top Keywords
Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states.
View Article and Find Full Text PDFEur Phys J C Part Fields
May 2022
Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany.
We present a dispersive representation of the transition form factor that allows one to account, in a consistent way, for the effects of - mixing in both the isoscalar and the isovector contributions. Using this formalism, we analyze recent data on to constrain the isovector part of the form factor, individually and in combination with data for the pion vector form factor, which suggests a tension in the - mixing parameter. As a first application, we use our results, in combination with the most recent input for the isoscalar part of the form factor, to predict the corresponding spectrum of , in particular we find the slope parameter .
View Article and Find Full Text PDFPhys Rev Lett
August 2021
Institute of Radioelectronics, Warsaw University of Technology, 00-665 Warsaw, Poland.
The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(→Kπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel.
View Article and Find Full Text PDFPhys Rev Lett
April 2018
The JINA Center for the Evolution of the Elements, Michigan State University, East Lansing, Michigan 48824, USA.
The (^{12}N, ^{12}C) charge-exchange reaction at 175 MeV/u was developed as a novel probe for studying the isovector spin giant monopole resonance (IVSMR), whose properties are important for better understanding the bulk properties of nuclei and asymmetric nuclear matter. This probe, now available through the production of ^{12}N as a secondary rare-isotope beam, is exothermic, is strongly absorbed at the surface of the target nucleus, and provides selectivity for spin-transfer excitations. All three properties enhance the excitation of the IVSMR compared to other, primarily light-ion, probes, which have been used to study the IVSMR thus far.
View Article and Find Full Text PDFPhys Rev Lett
April 2018
Center for Nuclear Study, The University of Tokyo, Bunkyo-ku, Hongo, Tokyo 113-0033, Japan.
We study the double Gamow-Teller (DGT) strength distribution of ^{48}Ca with state-of-the-art large-scale nuclear shell model calculations. Our analysis shows that the centroid energy of the DGT giant resonance depends mostly on the isovector pairing interaction, while the resonance width is more sensitive to isoscalar pairing. Pairing correlations are also key in neutrinoless ββ (0νββ) decay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!