A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface treatment of silicon carbide using TiO2(IV) photocatalyst. | LitMetric

Surface treatment of silicon carbide using TiO2(IV) photocatalyst.

J Am Chem Soc

Contribution from the Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan.

Published: May 2003

Silicon carbide (SiC) and diamond were decomposed to CO(2)(g) by the photocatalysis with TiO(2) at room temperature, although the decomposition rate of diamond was very slow. According to the XPS spectra of Si2p on the SiC surface, SiO(2) was simultaneously formed on the surface by the TiO(2) photocatalysis. The thickness of the SiO(2) formed on the SiC surface during the photocatalytic oxidation for 1 h was estimated to be about 40 A from the depth profile of the XPS spectra using Ar etching. The SiC surface was oxidized by the TiO(2) photocatalysis even under the condition without a direct contact with the TiO(2). This indicates that the photocatalytic oxidation of the SiC occurs due to active oxygen species photogenerated on the TiO(2) surface, but not by hole produced in the valence band of the TiO(2). Moreover, a remote surface treatment system using the quartz beads coated with TiO(2) was developed for the SiC surface oxidation. Consequently, the TiO(2) photocatalysis will be very useful for the surface treatment of SiC such as photopatterning without defects and damage to the substrate because the photocatalytic reaction is carried out under mild conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja020359iDOI Listing

Publication Analysis

Top Keywords

sic surface
16
surface treatment
12
tio2 photocatalysis
12
surface
9
silicon carbide
8
tio2
8
xps spectra
8
photocatalytic oxidation
8
sic
7
treatment silicon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!