Two frozen, raw horse meat-based diets fed to captive exotic felids at Brookfield Zoo were irradiated to determine the extent of microbial destruction and whether radiation treatment would affect consumption and/or fecal consistency in exotic cats. Fifteen cats, two African lions (Panthera leo), two Amur tigers (Panthera tigris altaica), one Amur leopard (Panthera pardus orientalis), two clouded leopards (Neofelis nebulosa), two caracals (Felis caracal), one bobcat (Felis rufus), and five fishing cats (Felis viverrinus), housed at Brookfield Zoo were fed nonirradiated and irradiated raw diets containing horse meat with cereal products and fortified with nutrients: Nebraska Brand Feline and/or Canine Diet (Animal Spectrum, North Platte, Nebraska 69103, USA). Baseline data were obtained during a 2-wk control period (nonirradiated diets), which was followed by a 4-wk period of feeding comparable irradiated diets. Feed intake and fecal consistency data were collected. An estimated radiation dose range of 0.5-3.9 kilograys reduced most microbial populations, depending on specific diet and microbe type. Irradiation had no overall effect on either feed consumption or fecal consistency in captive exotic cats, regardless of species, age, sex, or body mass. Data indicate that irradiation of frozen horse meat-based diets (packaged in 2.2-kg portions) result in microbial destruction in these products but that product storage time between irradiation and sampling may also affect microbial reduction. However, irradiation would be an appropriate method for reducing potentially pathologic bacteria in raw meat fed to exotic cats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1638/1042-7260(2001)032[0324:IODFTC]2.0.CO;2 | DOI Listing |
Porcine Health Manag
January 2025
Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
Background: Digestive disorders are one of the main health problems in suckling piglets. The correct visual identification of feces in suckling piglets is an important tool for the diagnosis of enteric diseases. The aim of the present observational study was to analyze different physicochemical parameters of the feces of suckling piglets aged 0 to 21 days: visual appearance (color and consistency), fecal dry matter (FDM) content and pH.
View Article and Find Full Text PDFJ Am Nutr Assoc
January 2025
School of Medicine, University of Granada, Granada, Spain.
Breast cancer (BC) is one of the leading causes of death and morbidity among women worldwide. Epidemiologic evidence shows that the risk of BC and other chronic diseases decreases as the proportion of whole plant foods increases, while the proportion of animal foods (fish, meat, poultry, eggs, seafood, and dairy products) and non-whole plant foods (e.g.
View Article and Find Full Text PDFClin Pharmacol Drug Dev
January 2025
Empros Pharma AB, Solna, Sweden.
A new modified-release oral formulation combines acarbose and orlistat (MR-OA) to enhance efficacy and reduce adverse effects through controlled drug release. This study aims to compare the pharmacodynamic properties of the orlistat component of MR-OA (MR-O) with a conventional orlistat product, Xenical (Conv-O), analyzing the percentage of fecal fat excretion. In addition, the pharmacokinetic properties of the complete formulation, MR-OA, were compared with Conv-O.
View Article and Find Full Text PDFCan Vet J
January 2025
Department of Clinical Studies (Kritikos, Monteith, Bateman) and Department of Pathobiology (Weese), Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1.
Objective: To determine the prevalence of fecal microorganisms and parasites in a population of sheltered cats, and to identify specific animal factors associated with infection.
Animals: A total of 79 sheltered cats and kittens in Guelph, Ontario.
Procedure: A fecal sample was collected from each animal upon shelter entry.
Nature
January 2025
Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!