Intracranial pressure (ICP) monitoring plays a valuable role in the management of head injuries and other causes of raised ICP in the pediatric population. The purpose of this study was to investigate the incidence of hemorrhage after ICP monitor insertion, and to classify these complications in a clinically relevant manner. Hospital charts of 431 children (ages 0-16 years) admitted to a level I trauma center over a 2-year period were reviewed and 112 patients (134 insertions) who underwent intraparenchymal ICP monitoring were identified. The authors reviewed postoperative neuroradiological studies. One hundred and nineteen procedures were carried out without any hemorrhage (grade 0). After 10 insertions, a small punctate hemorrhage or localized subarachnoid hemorrhage occurred (grade 1). Three patients sustained an intracerebral hemorrhage that did not require evacuation or manifest as a new neurological deficit (grade 2). There were no hemorrhagic complications that necessitated evacuation or resulted in a noticeable change in the patient's clinical condition (grade 3). We propose a new grading system for hemorrhage after ICP monitor insertion. We found a complication rate close to 10% in our pediatric patients. Fortunately, these hemorrhages were clinically silent and no neurosurgical intervention was necessary. However, grade 1 and grade 2 hemorrhages may manifest with a false reading of high ICP, and the long-term consequences of these complications are not known. Of note, only 23% of these complications were reflected in the patients charts, which may explain the low complication rates reported in other studies that did not analyze postoperative neuroradiological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000070877DOI Listing

Publication Analysis

Top Keywords

hemorrhagic complications
8
intracranial pressure
8
icp monitoring
8
hemorrhage icp
8
icp monitor
8
monitor insertion
8
postoperative neuroradiological
8
neuroradiological studies
8
icp
6
hemorrhage
6

Similar Publications

Purpose: Liver and lung metastases demonstrate distinct biological, particularly immunological, characteristics. We investigated whether preoperative complete blood count (CBC) parameters, which may reflect the immune system condition, predict early dissemination to the liver and lungs in colorectal cancer (CRC).

Methods: In this retrospective single-centre study, we included 268 resected CRC cases with complete 2-year follow-up and analysed preoperative CBC for association with early liver or lung metastasis development.

View Article and Find Full Text PDF

Patent ductus arteriosus (PDA) stenting is a vital intervention for neonates with ductal-dependent blood flow, offering an attractive alternative to surgical shunt placement. Despite its benefits, the procedure poses risks such as ductal spasm, branch pulmonary artery compromise, and pseudoaneurysm formation. This report presents two complex neonatal cases with distinct outcomes.

View Article and Find Full Text PDF

Dengue hemorrhagic fever (DHF) typically presents with various bleeding manifestations such as epistaxis, gum bleeding, and gastrointestinal bleeding. However, spontaneous large muscle hematoma formation is a rare complication. This case report discusses a patient with DHF who developed bilateral psoas muscle hematomas, a very uncommon presentation.

View Article and Find Full Text PDF

Endovascular versus Best Medical Treatment for Acute Carotid Occlusion BelOw Circle of Willis (ACOBOW): The ACOBOW Study.

Radiology

January 2025

From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).

Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.

View Article and Find Full Text PDF

Stromal vascular fraction (SVF) is a heterogeneous collection of cells obtained from adipose tissue through lipoaspiration and is an alter-native intraarticular treatment option, especially in osteoarthritis (OA). The anti-inflammatory and extracellular tissue repair-stimulating properties of SVF increase its effectiveness in regeneration and repair mechanisms. One of the most common symptoms of hemophilia A and B is hemophilic arthropathy (HA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!