Studies on the internalization mechanism of cationic cell-penetrating peptides.

J Biol Chem

Synt:em, Institut de Génétique Moléculaire, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.

Published: August 2003

A great deal of data has been amassed suggesting that cationic peptides are able to translocate into eucaryotic cells in a temperature-independent manner. Although such peptides are widely used to promote the intracellular delivery of bioactive molecules, the mechanism by which this cell-penetrating activity occurs still remains unclear. Here, we present an in vitro study of the cellular uptake of peptides, originally deriving from protegrin (the SynB peptide vectors), that have also been shown to enhance the transport of drugs across the blood-brain barrier. In parallel, we have examined the internalization process of two lipid-interacting peptides, SynB5 and pAntp-(43-58), the latter corresponding to the translocating segment of the Antennapedia homeodomain. We report a quantitative study of the time- and dose-dependence of internalization and demonstrate that these peptides accumulate inside vesicular structures. Furthermore, we have examined the role of endocytotic pathways in this process using a variety of metabolic and endocytosis inhibitors. We show that the internalization of these peptides is a temperature- and energy-dependent process and that endosomal transport is a key component of the mechanism. Altogether, our results suggest that SynB and pAntp-(43-58) peptides penetrate into cells by an adsorptive-mediated endocytosis process rather than temperature-independent translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M303938200DOI Listing

Publication Analysis

Top Keywords

peptides
8
studies internalization
4
internalization mechanism
4
mechanism cationic
4
cationic cell-penetrating
4
cell-penetrating peptides
4
peptides great
4
great deal
4
deal data
4
data amassed
4

Similar Publications

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021.

Sci Rep

December 2024

State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.

View Article and Find Full Text PDF

This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.

View Article and Find Full Text PDF

Limited knowledge exists regarding biomarkers that predict treatment response in Lupus nephritis (LN). We aimed to identify potential molecular biomarkers to predict treatment response in patients with LN. We enrolled 66 patients with active LN who underwent renal biopsy upon enrollment.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!