Implanting recombinant cells encapsulated in alginate microcapsules to secrete therapeutic proteins has been proven clinically effective in treating several murine models of human diseases. However, once implanted, these microcapsules cannot be assessed without invasive surgery. We now report the preparation and characterization of a novel ferrofluid to render these microcapsules visible with magnetic resonance imaging (MRI). The ferrofluid was prepared as a colloidal iron oxide stabilized in water by alginate. The presence of iron particles in the ferrofluid was verified with chemical titration, dynamic light scattering, and magnetization measurement. The microcapsules fabricated with various concentrations of the ferrofluid in the core, or on the surface of alginate microcapsules, or both, all produced microcapsules with smooth surfaces as shown with light and scanning electron microscopy. However, at the nanoscale level, as revealed with atomic force microscopy, the ferrofluid-fabricated microcapsules demonstrated increased granularity, particularly when the ferrofluid was used to laminate the surface. From the force spectroscopy measurements, these modified microcapsules showed increasing surface rigidity in the following order: traditional alginate < ferrofluid in the core < ferrofluid on the surface. Although the mechanical stability of low-concentration ferrofluid (0.1%) microcapsules was reduced, increasing concentrations, up to 20%, were able to improve stability. When these ferrofluid microcapsules were examined with MRI, their T(2) relaxation time was reduced, thereby producing increased contrast readily detectable with MRI, whereas the traditional alginate microcapsules showed no difference when compared with water. In conclusion, such ferrofluid-enhanced alginate is suitable for fabricating microcapsules that offer the potential for in vivo tracking of implanted microcapsules without invasive surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.10674DOI Listing

Publication Analysis

Top Keywords

microcapsules
13
alginate microcapsules
12
ferrofluid
9
magnetic resonance
8
resonance imaging
8
implanted microcapsules
8
invasive surgery
8
ferrofluid core
8
traditional alginate
8
alginate
7

Similar Publications

Background: High prevalence of urinary tract infections (UTI), including cystitis, and concern for antimicrobial resistance justify safe and effective non-antibiotic therapies for prevention of recurrent UTI (rUTI). This study investigated the effect of a whole cranberry fruit powder supplement on incidence of culture-confirmed UTI (primary outcome) in females with rUTI history.

Methods: This multicenter, 6-month, randomized, placebo-controlled, double-blind study enrolled 150 healthy females (18-65 years, body mass index (BMI) >17.

View Article and Find Full Text PDF

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

This work represents different spectrophotometric techniques for concurrent quantification of Indacaterol (IND) and Mometasone furoate (MOM); co-formulated inhalation capsules to control asthma symptoms. Direct spectrophotometric (D) approach was applied for IND assay. While, absorption factor (AF), ratio difference (RD), mean centering of the ratio spectra (MC), and continuous wavelet transform (CW) techniques were utilized for MOM quantification.

View Article and Find Full Text PDF

Advancing medication compounding: Use of a pharmaceutical 3D printer to auto-fill minoxidil capsules for dispensing to patients in a community pharmacy.

Int J Pharm

January 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address:

Compounding medications in pharmacies is a common practice for patients with prescriptions that are not available commercially, but it is a laborious and error-prone task. The incorporation of emerging technologies to prepare personalised medication, such as 3D printing, has been delayed in smaller pharmacies due to concerns about potential workflow disruptions and learning curves associated with novel technologies. This study examines the use in a community pharmacy of a pharmaceutical 3D printer to auto-fill capsules and blisters using semisolid extrusion, incorporating an integrated quality control system.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!