Purpose: The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes.
Patients And Methods: Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated.
Results: There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341).
Conclusions: Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00061198-200306000-00012 | DOI Listing |
J Glaucoma
January 2025
Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
Prcis: Cognitive impairment in multiple domains was observed in primary open angle glaucoma patients as compared to age and gender matched healthy controls.
Objective: Evaluation of cognitive impairment in individuals with Primary Open Angle Glaucoma (POAG).
Methods: In this case-control study, individuals with POAG (cases, n=70) were compared with age- and sex-matched healthy individuals (controls, n=70) using detailed ophthalmological evaluation, cognitive assessment and serum cortisol level.
J Glaucoma
January 2025
Department of Ophthalmology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Universidad Complutense. Madrid, Spain.
Prcis: The discriminant function of glaucoma, obtained by the Laguna ONhE colorimetric program, significantly correlates with the BMO-MRW. Furthermore, the diagnostic capacity was inferior to other structural tests in POAG patients.
Purpose: To evaluate the diagnostic capability for glaucoma and the correlation between peripapillary and macular parameters using spectral domain optical coherence tomography (SD-OCT) and optic nerve head hemoglobin (OHN Hb) levels assessed by the Laguna ONhE® software using colorimetric analysis.
Cureus
December 2024
Internal Medicine, Unidade Local de Saúde de Coimbra, Coimbra, PRT.
Microscopic polyangiitis (MPA) is a rare, autoimmune, small-vessel vasculitis usually described with the presence of perinuclear antineutrophil cytoplasmic antibodies (p-ANCA). It encompasses a broad spectrum of clinical features, including fatigue, weight loss, fever, arthralgia, skin lesions, and involvement of the lungs or kidneys. Ocular manifestations, however, are extremely rare.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Glaucoma Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Qazvin Square, Tehran, Iran.
Background: To compare structural and vascular parameters between advanced pseudoexfoliation glaucoma (PXG) and primary open-angle glaucoma (POAG).
Methods: One hundred and six eyes of 81 patients were enrolled in this cross-sectional study. All patients underwent complete ophthalmic examination and measurement of the thickness of the peripapillary retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC).
Neuro Oncol
January 2025
Department of Neurology, Division of Infectious Diseases, Washington University School of Medicine, St. Louis MO 63110 USA.
Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!