The rate of synthesis of cytochrome f is decreased approximately 10-fold when it does not assemble with the other subunits of the cytochrome b(6)f complex in Chlamydomonas reinhardtii chloroplasts. This assembly-mediated regulation of cytochrome f synthesis corresponds to a regulation of petA mRNA initiation of translation. Here, we demonstrate that cytochrome f translation is autoregulated by its C-terminal domain. Five cytochrome f residues conserved throughout all chloroplast genomes-residue Gln-297 in the transmembrane helix and a cluster of four amino acids, Lys-Gln-Phe-Glu, at positions 305 to 308, in the stromal extension-participate in the formation of a translation repressor motif. By contrast, positively charged residues in the stromal extension have little influence on the autoregulation process. These results do not favor a direct interaction between the repressor motif and the petA 5' untranslated region but suggest the participation of a membrane-bound ternary effector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156378PMC
http://dx.doi.org/10.1105/tpc.011692DOI Listing

Publication Analysis

Top Keywords

cytochrome translation
8
repressor motif
8
cytochrome
6
translation chlamydomonas
4
chlamydomonas chloroplast
4
chloroplast autoregulated
4
autoregulated carboxyl-terminal
4
carboxyl-terminal domain
4
domain rate
4
rate synthesis
4

Similar Publications

Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

Genotype-Phenotype Correlation in Progressive External Ophthalmoplegia: Insights From a Retrospective Analysis.

Neuropathol Appl Neurobiol

February 2025

Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China.

Background: Progressive external ophthalmoplegia (PEO) is a classic manifestation of mitochondrial disease. However, the link between its genetic characteristics and clinical presentations remains poorly investigated.

Methods: We analysed the clinical, pathological and genetic characteristics of a large cohort of patients with PEO, based on the type of their mtDNA variations.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!