Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The relative contribution of aneuploidy and gene mutations to human tumorigenesis is not yet known. Studies in mice have demonstrated that even single point mutations in oncogenes and tumor suppressor genes can dramatically increase tumor frequency. However, models to evaluate the definitive role of aneuploidy and genomic instability are not yet available. Human fibroblast cells have long been used as a tool for investigating proliferation, senescence, immortalization, and tumorigenesis, all processes that are strongly interrelated. We have now used antisense and ribozyme-mediated temporary inhibition of BUB1 to study the consequences of mitotic checkpoint failure on the development of aneuploidy. The analysis of cell colonies selected by soft agar growth showed evidence of chromosome instability and delayed senescence, without being tumorigenic in nude mice. Our data suggest that chromosomal instability and aneuploidy are early changes that precede tumorigenicity in the multistep process leading to neoplastic transformation.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!