Recently, it has been reported that large-conductance Ca(2+)-activated potassium channels, also known as BK(Ca)-type potassium channels, are present in the inner mitochondrial membrane of the human glioma LN229 cell line. Hence, in the present study, we have investigated whether BK(Ca)-channel openers (BK(Ca)COs), such as the benzimidazolone derivatives NS004 (5-trifluoromethyl-1-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidazole-2-one) and NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one), affect the functioning of LN229 glioma cell mitochondria in situ. We examined the effect of BK(Ca)COs on mitochondrial membrane potential, mitochondrial respiration and plasma membrane potassium current in human glioma cell line LN229. We found that BK(Ca)COs decrease the mitochondrial membrane potential with an EC(50) value of 3.6+/-0.4 microM for NS1619 and 5.4+/-0.8 microM for NS004. This mitochondrial depolarization was accompanied by an inhibition of the mitochondrial respiratory chain. Both BK(Ca)COs induced whole-cell potassium current blocked by charybdotoxin, as measured by the patch-clamp technique. The BK(Ca)COs had no effect on membrane bilayer conductance. Moreover, the inhibition of mitochondrial function by NS004 and NS1619 was without effect on cell survival, as measured by lactate dehydrogenase release from the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(03)00180-1DOI Listing

Publication Analysis

Top Keywords

mitochondrial membrane
12
mitochondrial
8
mitochondrial function
8
potassium channels
8
human glioma
8
glioma cell
8
membrane potential
8
potassium current
8
inhibition mitochondrial
8
membrane
5

Similar Publications

Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.

View Article and Find Full Text PDF

In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.

View Article and Find Full Text PDF

Macrophage plasticity is critical for maintaining immune function and developing solid tumors; however, the macrophage polarization mechanism remains incompletely understood. Our findings reveal that Mg entry through distinct plasma membrane channels is critical to macrophage plasticity. Naïve macrophages displayed a previously unidentified Mg dependent current, and TRPM7-like activity, which modulates its survival.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!