A model incubation system containing purified thyroid peroxidase (TPO) was used to study the mechanism of action of the thioureylene anti-thyroid drugs--propylthiouracil (PTU), methylmercapto imidazole (MMI) and carbimazole. Two general types of experiments were performed: a) measurement of the inhibitory effects of the drugs on TPO-catalyzed iodination and on TPO-catalyzed oxidation of guaiacol, and b) studies of the metabolism of PTU and MMI by the TPO model system. The major observations can be summarized as follows: 1) The thioureylene drugs are potent inhibitors of TPO-catalyzed iodination of protein and tyrosine. Their potency increases greatly as the concentration of I- decreases. 2) The thioureylene drugs are also potent inhibitors of TPO-catalyzed oxidation of guaiacol, a reaction that does not involve iodide. 3) MMI and PTU are readily oxidized in the model incubation system when iodide is present but not in the absence of iodide. The rate of oxidation increased as the iodide concentration was increased from 10 to 100 muM. 4) Oxidation of PTU and MMI by the model incubation system is inhibited by relatively slight increases in the concentration of PTU and MMI. These drugs are capable of inhibiting their own and each other's metabolism. 5) Inhibition of iodination is competitively antagonized by iodide at low drug concentrations, but not at higher drug concentrations. 6) Inhibition of iodination by MMI and PTU may be either reversible (low ratio of drug to iodide), or irreversible (higher ratio of drug to iodide). In reversible inhibition the iodination is inhibited for a period which may be as brief as 2 min or as long as 20 min, but thereafter, iodination begins, and there is escape from inhibition. During the lag-period there is extensive metabolism of the drug. In the case of irreversible inhibition of iodination is inhibited completely or almost completely for 60 min, and drug oxidation during this period is relatively low. 7) Irreversible inhibition may be transformed into reversible inhibition by increasing the concentration of TPO or the concentration of iodide. However, increasing the concentration of H2O2 or of tyrosine does not overcome irreversible inhibition. On the basis of these findings and of current views concerning the mechanism of enzymatic iodination, a scheme is proposed for the mechanism of inhibition by thioureylene drugs of TPO-catalyzed iodination of protein and tyrosine.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-98-4-1031DOI Listing

Publication Analysis

Top Keywords

inhibition iodination
16
model incubation
12
incubation system
12
tpo-catalyzed iodination
12
ptu mmi
12
thioureylene drugs
12
irreversible inhibition
12
iodination
9
inhibition
9
mechanism action
8

Similar Publications

The aim of this study was to investigate whether Trypanosoma vivax is transmitted via rectal palpation in cattle, using the same glove with different blood scores, from an animal with an acute infection of this protozoan. In addition, the efficacy of iodine as disinfectant, together with water with or without the presence of feces, to prevent the transmission of T. vivax in cattle during the rectal palpation process was evaluated in the laboratory and animals.

View Article and Find Full Text PDF

Thiophene engineering of near-infrared D-π-A nano-photosensitizers for enhanced multiple phototheranostics and inhibition of tumor metastasis.

J Colloid Interface Sci

January 2025

Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:

Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.

View Article and Find Full Text PDF

Perovskite heterostructures have attracted wide interest for their photovoltaic and optoelectronic applications. The interdiffusion of halide anions leads to the poor stability and shorter lifetime of the halide perovskite heterostructures. Covering organic cations on the surface of perovskite heterostructures, the diffusion of ions can effectively be suppressed.

View Article and Find Full Text PDF

The effect of cardiac catheterization on thyroid functions in infants with congenital heart diseases: a prospective observational study.

Eur J Pediatr

January 2025

Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University Children's Hospital, Mansoura University, Gomhoria Street, Mansoura, 35516, Dakhlia, Egypt.

Unlabelled: This study aims to determine the incidence, clinical course, and risk factors of hypothyroidism following cardiac catheter (CC) in infants with congenital heart diseases (CHD). This prospective study involved 115 patients with CHD, all aged 3 years or younger, who underwent CC, as well as 100 healthy age- and sex-matched controls. Baseline thyroid function tests (TFTs) were conducted for both the patients and controls.

View Article and Find Full Text PDF

Enhancing battery longevity by regulating the solvation chemistry of organic iodide.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!