To determine the involvement of vascular endothelial growth factor (VEGF) and its receptors Flk-1 and Flt-1 in capillary growth in ischaemic skeletal muscle, extensor digitorum longus muscles from hindlimbs of Sprague-Dawley rats were studied at 1, 2 and 5 week intervals after iliac artery ligation. Muscle VEGF protein levels (as determined by Western-blot analysis) increased only after 2 (60%) and 5 (80%) weeks, with more capillaries positively immunostained for VEGF than in control muscles. Ischaemia-induced angiogenesis was gradual, with capillary proliferation at 1 and 2 weeks and capillary:fibre ratio increased 20% after 5 weeks. This was associated with an initial doubling of Flk-1 protein after 1 week that declined below control levels by 5 weeks, whereas Flt-1 expression was elevated more than 40% at all time points. During more sustained ischaemia (femoral ligation 3 weeks after iliac ligation), VEGF protein level at 5 weeks was even higher, but Flt-1 and Flk-1 were unchanged from control levels and no capillary growth occurred. Intermittent electrical stimulation (10 Hz, 7x15 min/day) of these ischaemic muscles between weeks 3-5 did not elevate VEGF further, but increased Flk-1 by 32%, decreased Flt-1 by 71%, and led to significant capillary growth. These results demonstrate that during chronic muscle ischaemia Flk-1 and Flt-1 are regulated differentially and that electrical stimulation of ischaemic muscles can promote angiogenesis via Flk-1 up-regulation. Even when ischaemic muscle VEGF levels are high, capillary growth appears to be dependent on the presence of Flk-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20030035 | DOI Listing |
Cureus
December 2024
Pulmonology, King Abdulaziz Medical City, Jeddah, SAU.
A 52-year-old female patient with a history of atrial septal defect repair presented with progressive dyspnea and echocardiographic findings suggestive of pulmonary hypertension (PH). Incidentally, a lung mass was discovered on computed tomography (CT). Initial evaluation revealed World Health Organization functional class III symptoms and significant weight loss.
View Article and Find Full Text PDFBrain Commun
January 2025
Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus.
Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA) repeat units is considered highly penetrant, while (GAA) is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Industrial Technology Innovation Center of Ibaraki Prefecture, 3781 Nagaoka, Ibaraki-machi, Higashiibaraki-gun, Ibaraki 311-3195, Japan. Electronic address:
Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China. Electronic address:
Recent studies demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RA) have promising prospects in promoting wound healing. In this study, we intend to investigate the pro-healing effect and potential molecular mechanism of topical administration of GLP-1RA liraglutide on wounds in normoglycemic mice. Two full-thickness wounds were created on the back of the C57BL/6 mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!