The billiard system of Benettin and Strelcyn [Phys. Rev. A 17, 773-785 (1978)] is generalized to a two-parameter family of different shapes. Its boundaries are composed of circular segments. The family includes the integrable limit of a circular boundary, convex boundaries of various shapes with mixed dynamics, stadiums, and a variety of nonconvex boundaries, partially with ergodic behavior. The extent of chaos has been measured in two ways: (i) in terms of phase space volume occupied by the main chaotic band; and (ii) in terms of the Lyapunov exponent of that same region. The results are represented as a kind of phase diagram of chaos. We observe complex regularities, related to the bifurcation scheme of the most prominent resonances. A detailed stability analysis of these resonances up to period six explains most of these features. The phenomenon of breathing chaos [Nonlinearity 3, 45-67 (1990)]-that is, the nonmonotonicity of the amount of chaos as a function of the parameters-observed earlier in a one-parameter study of the gravitational wedge billiard, is part of the picture, giving support to the conjecture that this is a fairly common global scenario. (c) 1996 American Institute of Physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.166156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!