Nonlinear dynamics in pulsatile secretion of parathyroid hormone in normal human subjects.

Chaos

Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, Konstanty-Gutschow-Str. 8, D-30625 Hannover, GermanyInstitut fur Quantenoptik, Universitat Hannover, Welfengarten 1, D-30167 Hannover, Germany.

Published: March 1995

In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization. Phase space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition of a (in comparison to normal subjects) relatively quiet "low dynamic" secretory pattern in osteoporosis, and a "high dynamic" state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy men exhibits characteristics of nonlinear determinism. Our findings suggest that this is conceivable, although on the basis of presently available data and techniques, no proof can be established. Nevertheless, pulsatile secretion of PTH might be a first example of nonlinear deterministic dynamics in an apparently irregular hormonal rhythm in human physiology. (c) 1995 American Institute of Physics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.166089DOI Listing

Publication Analysis

Top Keywords

pulsatile secretion
12
parathyroid hormone
8
secretion pth
8
hormonal
5
nonlinear dynamics
4
dynamics pulsatile
4
secretion
4
secretion parathyroid
4
hormone
4
hormone normal
4

Similar Publications

Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty.

J Endocr Soc

January 2025

Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.

Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.

View Article and Find Full Text PDF

The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism).

View Article and Find Full Text PDF

The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation.

View Article and Find Full Text PDF

Kisspeptin and Neurokinin B: roles in reproductive health.

Physiol Rev

January 2025

Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.

Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.

View Article and Find Full Text PDF

The current study investigated the effect of a single administration of human chorionic gonadotropin hormone (hCG) and its nanoparticles (NPs) on testicular hemodynamics using Doppler ultrasonography, testicular volume, testicular echotexture (PIX), and circulating testosterone and nitric oxide (NO) in pubescent goat bucks during summer months. Fifteen Baladi goats were divided into three groups (5 in each) and subjected to a single intramuscular administration of one ml of physiological saline ( control group), one ml containing 500 IU of hCG (hCG group) or one ml containing 125 IU of hCG NPs (hCG NPs group). Testicular hemodynamics assessment was done just before administration (0 h), and at 2, 4, 6, 24, and daily till 7 days after administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!